Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Суррогатный нейросетевой метод восстановления поля течения из однородного поля итерациями в расчетах стационарных турбулентных течений
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 179-197Последние годы получило широкое распространение применение нейросетевых моделей для решения задач аэродинамики. В основном такие модели, обученные по некоторому набору ранее полученных решений, позволяют предсказывать решения новых задач и являются в некотором смысле алгоритмами интерполяции. Альтернативным подходом может служить построение нейросетевого оператора, представляющего собой нейросетевую модель, которая воспроизводит поведение численного метода решения задачи. Такая модель позволяет находить решение задачи итерациями. В работе рассматривается вариант построения такого оператора с применением нейронной сети типа UNet с пространственным механизмом внимания для решения задач обтекания на прямоугольной равномерной сетке, общей для обтекаемого тела и поля течения. Для уточнения полученного решения предлагается и исследуется механизм коррекции решения. Анализируется вопрос устойчивости такого алгоритма решения стационарной задачи, проводится сравнение с некоторыми другими вариантами его построения: прием с продвижением вперед (pushforward trick), позиционное встраивание. Рассматривается вопрос выбора набора итераций для формирования обучающей выборки. Оценивается поведение решения при многократном применении нейросетевого оператора.
Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различными вариантами скругления при фиксированных параметрах набегающего потока с числом Рейнольдса $\text{Re} = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. При этом нейросетевая модель, используемая для построения оператора, имеет общий декодер для обеих компонент скорости. Проводится сравнение полей течения и профилей скорости по нормали и по обводу тела, полученных нейросетевым оператором и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают, что нейросетевой оператор позволяет находить решение с высокой точностью устойчивым образом.
Ключевые слова: аэродинамика, турбулентность, нейросетевой оператор, сверточная нейронная сеть, UNet, механизм внимания. -
Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.
Ключевые слова: импульсные нейронные сети, гауссовы рецептивные поля, спайковое кодирование информации. -
Просмотров за год: 6. Цитирований: 16 (РИНЦ).
Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.
-
Совершенствование метода парных сравнений для реализации в компьютерных программах, применяемых при оценке качества технических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1125-1135Представлен усовершенствованный метод парных сравнений, в котором посредством табличных форм систематизированы правила логических выводов при сравнении технических систем и формулы проверочных значений. Для этого сформулированы рациональные правила логических выводов при парном сравнении систем. С целью проверки результатов оценки на непротиворечивость введены понятия количества баллов, набранных одной системой, и коэффициента качества систем, а также разработаны формулы расчетов. Для целей практического использования данного метода при разработке программ для ЭВМ предлагаются формализованные варианты взаимосвязанных таблиц: таблица обработки и систематизации экспертной информации, таблица возможных логических выводов по результатам сравнения заданного количества технических систем и таблица проверочных значений при использовании метода парных сравнений при оценке качества определенного количества технических систем. Таблицы позволяют более рационально организовать процедуры обработки информации и в значительной степени исклю- чить влияние ошибок при вводе данных на результаты оценки качества технических систем. Основной положительный эффект от внедрения усовершенствованного метода парных сравнений состоит в существенном сокращении времени и ресурсов на организацию работы с экспертами, обработку экспертной информации, а также на подготовку и проведение дистанционного опроса экспертов по сети Интернет или локальной вычислительной сети предприятия (организации) за счет рационального использования исходных данных о качестве оцениваемых систем. Предлагаемый усовершенствованный метод реали- зован в программах для ЭВМ, предназначенных для оценки эффективности и устойчивости больших технических систем.
-
Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.
Ключевые слова: седловая задача, невыпуклая оптимизация, равномерно выпуклая функция, неточный оракул, метод высшего порядка. -
Нейросетевой подход к исследованию задач оптимального управления
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.
Ключевые слова: оптимальное управление, дифференциальные игры, нейронная сеть, равновесие Нэша, принцип максимума Понтрягина. -
Критическая скорость роста вычислительных сетей для обеспечения неограниченной наработки на отказ
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 33-39Исследуется отказоустойчивость конечной вычислительной сети с произвольным графом, элементы которой имеют вероятность отказа и вероятность восстановления после отказа. Работа сети происходит по трехэтапным тактам (разрушение-восстановление-функционирование). Предлагается алгоритм наращивания сети в начале каждого такта ее работы. При этом граф увеличенной конфигурации сети формируется путем добавления новых экземпляров исходной сети и соединения их определенным образом с элементами старой конфигурации сети. Доказывается, что при достаточно быстром росте сеть имеет положительную вероятность неограниченной безотказной работы. Параметрическая оценка критической скорости роста сети имеет логарифмический порядок по числу тактов.
-
О возможной модификации дискретной математической модели динамического развития транспортной сети
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 395-401Просмотров за год: 5. Цитирований: 5 (РИНЦ).Целью данной работы явилось исследование дискретной математической модели динамического развития транспортной сети, ранее разработанной с участием автора. В ходе такого исследования были выявлены недостатки модели, рассмотрены пути устранения этих недостатков, после чего построена новая версия модели. На основе этой новой модели были созданы имитационные схемы для проведения пробных расчетов, аналогичных тем, какие использовались для тестирования исходной модели. Проведен сравнительный анализ результатов тестовых расчетов на основе новой и исходной моделей.
-
Алгоритм выбора структурных параметров искусственной нейронной сети и объема обучающей выборки при аппроксимации поведения динамического объекта
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 243-251Просмотров за год: 2. Цитирований: 8 (РИНЦ).В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть. -
Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203Просмотров за год: 4. Цитирований: 2 (РИНЦ).В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"