Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'программная реализация':
Найдено статей: 68
  1. Старостин И.Е., Быков В.И.
    К проблеме программной реализации потенциально-потокового метода описания физико-химических процессов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 817-832

    В рамках современной неравновесной термодинамики (макроскопического подхода описания и математического моделирования динамики реальных физико-химических процессов) авторами был разработан потенциально-потоковый метод описания и математического моделирования этих процессов, применимый в общем случае реальных макроскопических физико-химических систем. В соответствии с этим методом описание и математическое моделирование этих процессов заключаются в определении через потенциалы взаимодействия термодинамических сил, движущих эти процессы, и кинетической матрицы, определяемой кинетическими свойствами рассматриваемой системы, которые, в свою очередь, определяют динамику протекания физико-химических процессов в этой системе под действием термо-динамических сил в ней. Зная термодинамические силы и кинетическую матрицу системы, определяются скорости протекания физико-химических процессов в системе, а через эти скорости согласно законам сохранения определяются скорости изменения ее координат состояния. Получается, таким образом, замкнутая система уравнений физико-химических процессов в системе. Зная потенциалы взаимодействия в системе, кинетические матрицы ее простых подсистем (отдельных процессов, сопряженных между собой и не сопряженных с другими процессами), коэффициенты, входящие в законы сохранения, начальное состояние рассматриваемой системы, внешние потоки в нее, можно получить полную динамику физико-химических процессов в этой системе. Однако в случае сложной физико-химической системы, в которой протекает большое количество физико-химических процессов, размерность системы уравнений этих процессов становится соответствующей. Отсюда возникает проблема автоматизации формирования описанной системы уравнений динамики физико-химических процессов в рассматриваемой системе. В настоящей статье разрабатывается архитектура библиотеки программных типов данных, реализующих заданную пользователем физико-химическую систему на уровне ее расчетной схемы (координат состояния системы, энергетических степеней свободы, физико-химических процессов, в ней протекающих, внешних потоков и взаимосвязи между этими перечисленными компонентами) и алгоритмов задания ссылок в этих типах данных, а также расчета описанных параметров системы.

    Просмотров за год: 12.
  2. Семакин А.Н.
    Оценка масштабируемости программы расчета движения примесей в атмосфере средствами симулятора gem5
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 773-794

    В данной работе мы предлагаем новую эффективную программную реализацию алгоритма расчета трансконтинентального переноса примеси в атмосфере от естественного или антропогенного источника на адаптивной конечно-разностной сетке, концентрирующей свои узлы внутри переносимого облака примеси, где наблюдаются резкие изменения значений ее массовой доли, и максимально разрежающей узлы во всех остальных частях атмосферы, что позволяет минимизировать общее количество узлов. Особенностью реализации является представление адаптивной сетки в виде комбинации динамических (дерево, связный список) и статических (массив) структур данных. Такое представление сетки позволяет увеличить скорость выполнения расчетов в два раза по сравнению со стандартным подходом представления адаптивной сетки только через динамические структуры данных.

    Программа создавалась на компьютере с шестиядерным процессором. С помощью симулятора gem5, позволяющего моделировать работу различных компьютерных систем, была произведена оценка масштабируемости программы при переходе на большее число ядер (вплоть до 32) на нескольких моделях компьютерной системы вида «вычислительные ядра – кэш-память – оперативная память» с разной степенью детализации ее элементов. Отмечено существенное влияние состава компьютерной системы на степень масштабируемости исполняемой на ней программы: максимальное ускорение на 32-х ядрах при переходе от двухуровневого кэша к трехуровневому увеличивается с 14.2 до 22.2. Время выполнения программы на модели компьютера в gem5 превосходит время ее выполнения на реальном компьютере в 104–105 раз в зависимости от состава модели и составляет 1.5 часа для наиболее детализированной и сложной модели.

    Также в статье рассматриваются подробный порядок настройки симулятора gem5 и наиболее оптимальный с точки зрения временных затрат способ проведения симуляций, когда выполнение не представляющих интерес участков кода переносится на физический процессор компьютера, где работает gem5, а непосредственно внутри симулятора выполняется лишь исследуемый целевой кусок кода.

  3. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

  4. Сивунов А.В., Масловская А.Г.
    Численное моделирование процессов зарядки при диагностике сегнетоэлектриков методами растровой электронной микроскопии
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 107-118

    Предложен алгоритм решения прикладной задачи расчета электрических характеристик полевых эффектов инжектированных зарядов в сегнетоэлектриках при электронном облучении, основанный на реализации детерминированной модели методом конечных элементов с учетом результатов моделирования транспорта электронов методом Монте-Карло. Разработано программное приложение для проведения вычислительного эксперимента.

    Цитирований: 2 (РИНЦ).
  5. Мадера А.Г.
    Моделирование воздействия тепловой обратной связи на тепловые процессы в электронных системах
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 483-494

    Статья посвящена эффекту тепловой обратной связи, возникающему при функционировании интегральных микросхем и электронных систем, использующих микросхемы. Тепловая обратная связь обусловливается тем, что потребляемая при функционировании микросхемы мощность нагревает ее и, в силу значительной зависимости ее электрических параметров от температуры, между ее электрическими и тепловыми процессами возникает интерактивное взаимодействие. Воздействие тепловой обратной связи приводит к изменению как электрических параметров, так и уровней температуры в микросхемах. Положительная тепловая обратная связь представляет собой нежелательное явление, поскольку является причиной выхода электрических параметров микросхем за пределы допустимых значений, снижения надежности и, в ряде случаев, выгорания. Отрицательная тепловая обратная связь проявляется в стабилизации электрического и теплового режимов при пониженных уровнях температуры. Поэтому при проектировании микросхем и электронных систем с их применением необходимо добиваться реализации отрицательной обратной связи. В настоящей работе предлагается метод моделирования теплового режима электронных систем с учетом воздействия тепловой обратной связи. Метод основан на введении в тепловую модель электронной системы новых модельных схемных элементов, нелинейно зависящих от температуры, количество которых равно количеству микросхем в электронной системе. Такой подход позволяет применять к тепловой модели с введенными в нее новыми схемными элементами матрично-топологические уравнения тепловых процессов и включать их в существующие программные комплексы теплового проектирования. Приведен пример моделирования теплового процесса в реальной электронной системе с учетом воздействия тепловой обратной связи на примере микросхемы, установленной на печатной плате. Показано, что для адекватного моделирования электрических и тепловых процессов микросхем и электронных систем необходимо во избежание ошибок проектирования и создания конкурентоспособных электронных систем учитывать воздействие тепловой обратной связи.

    Просмотров за год: 22. Цитирований: 3 (РИНЦ).
  6. Степин Ю.П., Леонов Д.Г., Папилина Т.М., Степанкина О.А.
    Системное моделирование, оценка и оптимизация рисков функционирования распределенных компьютерных систем
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1349-1359

    В статье рассматривается проблема надежности эксплуатации открытой интеграционной платформы, обеспечивающей взаимодействие различных программных комплексов моделирования режимов транспорта газа, с учетом предоставления доступа к ним, в том числе через тонких клиентов, по принципу «программное обеспечение как услуга». Математически описаны функционирование, надежность хранения, передачи информации и реализуемость вычислительного процесса системы, что является необходимым для обеспечения работы автоматизированной системы диспетчерского управления транспортом нефти и газа. Представлено системное решение вопросов моделирования работы интеграционной платформы и тонких клиентов в условиях неопределенности и риска на базе метода динамики средних теории марковских случайных процессов. Рассматривается стадия стабильной работы — стационарный режим работы цепи Маркова с непрерывным временем и дискретными состояниями, которая описывается системами линейных алгебраический уравнений Колмогорова–Чепмена, записанных относительно средних численностей (математических ожиданий) состояний объектов исследования. Объектами исследования являются как элементы системы, присутствующие в большом количестве (тонкие клиенты и вычислительные модули), так и единичные (сервер, сетевой менеджер (брокер сообщений), менеджер технологических схем). В совокупности они представляют собой взаимодействующие Марковские случайные процессы, взаимодействие которых определяется тем, что интенсивности переходов в одной группе элементов зависят от средних численностей других групп элементов.

    Через средние численности состояний объектов и интенсивностей их переходов из состояния в состояние предлагается многокритериальная дисперсионная модель оценки риска (как в широком, так и узком смысле, в соответствии со стандартом МЭК). Риск реализации каждого состояния параметров системы вычисляется как среднеквадратическое отклонение оцениваемого параметра системы объектов (в данном случае — средние численности и вероятности состояний элементов открытой интеграционной платформы и облака) от их среднего значения. На основании определенной дисперсионной модели риска функционирования элементов системы вводятся модели критериев оптимальности и рисков функционирования системы в целом. В частности, для тонкого клиента рассчитываются риск недополучения выгоды от подготовки и обработки запроса, суммарный риск потерь, связанный только с непроизводительными состояниями элемента, суммарный риск всех потерь от всех состояний системы. Для полученной многокритериальной задачи оценки рисков предлагаются модели (схемы компромисса) выбора оптимальной стратегии эксплуатации.

  7. Кубасова Н.А., Цатурян А.К.
    Молекулярно-динамическая оценка механических свойств фибриллярного актина
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1081-1092

    Актин — консервативный структурный белок, который экспрессируется в клетках всех эукариот. При полимеризации он образует длинные нити фибриллярного актина, или F-актина, которые участвуют в формировании цитоскелета, в мышечном сокращении и его регуляции, а также во многих других процессах. Динамические и механические свойства актина важны для взаимодействия с другими белками и реализации его многочисленных функций в клетке. Мы провели молекулярно-динамические (МД) расчеты сегмента актиновой нити, состоящего из 24 мономеров, в отсутствие и в присутствии MgADP, с явным учетом растворителя и при физиологи- ческой ионной силе при 300 К длительностью 204,8 нс в силовых полях AMBER99SB-ILDN и CHARMM36 в программной среде GROMACS, используя в качестве исходной структуры современные структурные модели, полученные методом криоэлектронной микроскопии высокого разрешения. МД-расчеты показали, что стационарный режим флуктуаций структуры длинного сегмента F-актина вырабатывается через 80–100 нс после начала МД-траектории. По результатам МД-расчетов оценили основные параметры спирали актина и ее изгибную, продольную и торсионную жесткости, используя участок расчетной модели, достаточно далеко отстоящий от ее концов. Оцененные значения шага (2,72–2,75 нм) и угла (165–168) спирали F-актина, его изгибной (2,8–4,7 · 10−26 Н · м2), продольной (36–47 · 10−9 Н) и торсионной (2,6–3,1 · 10−26 Н · м2) жесткости хорошо согласуются с результатами наиболее надежных экспериментов. Результаты МД-расчетов показали, что современные структурные модели F-актина позволяют достаточно аккуратно описать его динамику и механические свойства при условии использования расчет- ных моделей, содержащих достаточно большое количество мономеров, современных силовых полей и относительно длинных МД-траекторий. Включение в МД-модели белков-партнеров актина, в частности тропомиозина и тропонина, может помочь понять молекулярные механизмы таких важных процессов, как регуляция мышечного сокращения.

  8. Конюхов И.В., Конюхов В.М., Черница А.А., Дюсенова А.
    Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636

    Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.

  9. Катасёв А.С.
    Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492

    В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.

    Просмотров за год: 12.
  10. Брацун Д.А., Бузмаков М.Д.
    Репрессилятор с запаздывающей экспрессией генов. Часть II. Стохастическое описание
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 587-609

    Репрессилятором называют первую в синтетической биологии генную регуляторную сеть, искусственно сконструированную в 2000 году. Он представляет собой замкнутую малоразмерную цепь из трех генов: $lacI$, $\lambda cI$ и $tetR$, которые в такой комбинации в природе не встречаются. Промотор каждого гена контролирует следующий за ним цистрон по принципу отрицательной обратной связи, подавляя экспрессию соседнего гена. Ранее в работе [Брацун и др., 2018] была предложена математическая модель запаздывающего репрессилятора и изучены ее свойства в рамках детерминистского описания. Предполагается, что запаздывание может быть как естественным, т. е. возникать во время процессов транскрипции/трансляции в силу многоступенчатого характера этих процессов, так и искусственным, т. е. специально вноситься в работу регуляторной сети с помощью методов генной инженерии. Данная работа посвящена стохастическому описанию динамических процессов в запаздывающем репрессиляторе, которое является важным дополнением детерминистского анализа из-за сильных флуктуаций и небольшого числа молекул, принимающих обычно участие в генной регуляции. Стохастическое исследование было проведено численно с помощью алгоритма Гиллеспи, модифицированного для систем с запаздыванием. Приводятся описание алгоритма, его программная реализация и результаты тестовых расчетов для одногенного авторепрессора с запаздыванием. При исследовании репрессилятора обнаружено, что стохастическое описание в ряде случаев дает новую информацию о поведении системы, которая не сводится к детерминистской динамике даже при усреднении по большому числу реализаций. В подкритической области, где детерминистский анализ предсказывает абсолютную устойчивость системы, было обнаружено возбуждение квазирегулярных колебаний, вызываемых нелинейным взаимодействием шума и запаздывания. Выше порога возникновения неустойчивости обнаружено спонтанное изменение фазы колебаний из-за внезапной временной деградации этих колебаний. Ранее в детерминистском анализе был обнаружен долгоживущий переходный режим, который отвечает движению фазовой траектории по медленному многообразию и отражает процесс длительной синхронизации пульсаций в работе отдельных генов. Показано, что в стохастическом случае переход к кооперативному режиму работы генов репрессилятора происходит в среднем на два порядка быстрее. Построено распределение вероятности соскока фазовой траектории с медленного многообразия и определено наиболее вероятное время такого перехода. Обсуждается влияние внутреннего шума химических реакций на динамические свойства репрессилятора.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.