Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Неэкстенсивная статистика Тсаллиса системы контрактоворганизаций оборонно-промышленного комплекса
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1163-1183В работе проведен анализ системы контрактов, заключаемых организациями оборонно-промышленного комплекса России в процессе выполнения государственного оборонного заказа. Сделан вывод, что для описания данной системы может быть использована методология статистической механики. По аналогии с подходом, применяемым при рассмотрении большого канонического ансамбля Гиббса, изучаемый ансамбль сформирован в виде набора мгновенных «картинок», образованных из действующих в каждый момент времени неразличимых контрактов со своими стоимостями. Показано, что ограничения, накладываемые государством на процесс ценообразования, являются причиной того, что совокупность контрактов может быть отнесена к категории так называемых сложных систем, для описания которых используется неэкстенсивная статистика Тсаллиса. Это приводит к тому, что стоимостные распределения контрактов должны соответствовать деформированному распределению Бозе–Эйнштейна, полученному с использованием энтропии Тсаллиса. Данный вывод справедлив как для всей совокупности контрактов, заключаемых участниками выполнения государственного оборонного заказа, так и контрактов, заключаемых отдельной организацией в качестве исполнителя.
Для анализа степени соответствия эмпирических стоимостных распределений модифицированному распределению Бозе–Эйнштейна в настоящей работе использован метод сравнения соответствующих функций распределения вероятностей. В работе делается вывод о том, что для изучения стоимостных распределений контрактов отдельной организации в качестве анализируемых данных можно использовать сформировавшиеся за календарный год распределения выручки по отдельным заказам, соответствующим заключенным контрактам. Получены эмпирические функции распределения вероятностей ранжированных значений выручки от реализации по отдельным заказам АО «Концерн «ЦНИИ «Электроприбор», одной из ведущих приборостроительных организаций ОПК России, с 2007 по 2021 год. Наблюдается хорошее согласие между эмпирическими и теоретическими функциями распределений вероятностей, рассчитанными с использованием деформированных распределений Бозе–Эйнштейна в пределе «разряженного газа контрактов». Полученные на основе эмпирических данных значения параметров энтропийного индекса для каждого из изученных распределений выручки свидетельствуют о достаточно высокой степени неаддитивности, присущей изучаемой системе. Показано, что для оценки характеристических стоимостей распределений можно использовать величину среднего значения годовой выручки, рассчитанного с помощью нормированного эскортного распределения. Факт наилучшего согласия эмпирических и теоретических функций распределения вероятностей при нулевых значениях химического потенциала позволяет сделать предположение, что изучаемый «газ контрактов» можно сравнить с газом фотонов, в котором число частиц не является постоянным.
-
Математические модели боевых и военных действий
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 217-242Моделирование боевых и военных действий является важнейшей научной и практической задачей, направленной на предоставление командованию количественных оснований для принятия решений. Первые модели боя были разработаны в годы первой мировой войны (М. Осипов, F. Lanchester), а в настоящее время они получили широкое распространение в связи с массовым внедрением средств автоматизации. Вместе с тем в моделях боя и войны не в полной мере учитывается моральный потенциал участников конфликта, что побуждает и мотивирует дальнейшее развитие моделей боя и войны. Рассмотрена вероятностная модель боя, в которой параметр боевого превосходства определен через параметр морального (отношение процентов выдерживаемых потерь сторон) и параметр технологического превосходства. Для оценки последнего учитываются: опыт командования (способность организовать согласованные действия), разведывательные, огневые и маневренные возможности сторон и возможности оперативного (боевого) обеспечения. Разработана теоретико-игровая модель «наступление–оборона», учитывающая действия первых и вторых эшелонов (резервов) сторон. Целевой функцией наступающих в модели является произведение вероятности прорыва первым эшелоном одного из пунктов обороны на вероятность отражения вторым эшелоном контратаки резерва обороняющихся. Решена частная задача управления прорывом пунктов обороны и найдено оптимальное распределение боевых единиц между эшелонами. Доля войск, выделяемая сторонами во второй эшелон (резерв), растет с увеличением значения агрегированного параметра боевого превосходства наступающих и уменьшается с увеличением значения параметра боевого превосходства при отражении контратаки. При планировании боя (сражения, операции) и распределении своих войск между эшелонами важно знать не точное количество войск противника, а свои и его возможности, а также степень подготовленности обороны, что не противоречит опыту ведения боевых действий. В зависимости от условий обстановки целью наступления может являться разгром противника, скорейший захват важного района в глубине обороны противника, минимизация своих потерь и т. д. Для масштабирования модели «наступление–оборона» по целям найдены зависимости потерь и темпа наступления от начального соотношения боевых потенциалов сторон. Выполнен учет влияния общественных издержек на ход и исход войн. Дано теоретическое объяснение проигрыша в военной кампании со слабым в технологическом отношении противником и при неясной для общества цели войны. Для учета влияния психологических операций и информационных войн на моральный потенциал индивидов использована модель социально-информационного влияния.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"