Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.
-
Двумерное моделирование воздействия импульсного локального нагрева на отрывное сверхзвуковое течение, вызванное его поворотом
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1283-1300В работе исследуется влияние быстрого локального выделения тепла вблизи обтекаемой сверхзвуковым потоком газа (воздуха) поверхности на область отрыва, возникающую при быстром его повороте. Данная поверхность состоит из двух плоскостей, образующих при пересечении тупой угол, так что при обтекании этой поверхности сверхзвуковой поток газа поворачивается на положительный угол, что формирует косой скачок уплотнения, взаимодействующий с пограничным слоем и вызывающий отрыв потока. Быстрый локальный нагрев газа над обтекаемой поверхностью моделирует протяженный искровой разряд субмикросекундной длительности, пересекающий поток. Газ, нагретый в зоне разряда, взаимодействует с областью отрыва. Течение можно считать плоским, поэтому численное моделирование проводится в двумерной постановке. Численное моделирование проведено для ламинарного режима течения с использованием солвера sonicFoam пакета программ OpenFOAM.
В работе описан способ построения двумерной расчетной сетки с использованием шестигранных ячеек. Выполнено исследование сеточной сходимости. Приводится методика задания начальных профилей параметров течения на входе в расчетную область, позволяющая сократить время счета при уменьшении количества расчетных ячеек. Описан способ нестационарного моделирования процесса быстрого локального нагрева газа, заключающегося в наложении дополнительных полей повышенных значений давления и температуры, вычисленных из величины энергии, вложенной в набегающий сверхзвуковой поток газа, на соответствующие поля величин, предварительно полученные в стационарном случае. Параметры энерговклада в поток, соответствующие параметрам процесса инициирования электрического разряда, а также параметры набегающего потока близки к экспериментальным величинам.
При анализе данных численного моделирования получено, что быстрый локальный нагрев приводит к возникновению газодинамического возмущения (квазицилиндрической ударной волны и нестационарного завихренного течения), которое при взаимодействии с областью отрыва приводит к смещению точки отрыва вниз по потоку. В работе рассмотрен вопрос о влиянии энергии, затраченной на локальный нагрев газа, и положения места нагрева относительно точки отрыва на величину максимального ее смещения.
-
Моделирование некоторых сценариев в системе «власть – общество», включающих миграцию населения и изменение количества регионов
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1499-1512В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.
В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.
Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.
Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.
Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.
Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.
-
Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.
Ключевые слова: вибрация, холодная прокатка, рабочий валок, конечно-элементный анализ, DEFORM-3D, разнотолщинность.Просмотров за год: 12. Цитирований: 1 (РИНЦ). -
О границе упругопластических тел минимального объема
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 503-515Просмотров за год: 8.В статье изучаются упругопластические тела минимального объема. Часть границы всех рассматриваемых тел закреплена в одних и тех же точках пространства, на остальной части граничной поверхности заданы напряжения (загруженная поверхность). Форма загруженной поверхности может изменяться в пространстве, но при этом коэффициент предельной нагрузки, вычисленный в предположении, что тела заполнены упругопластической средой, не должен быть меньше фиксированного значения. Кроме того, предполагается, что все варьируемые тела содержат внутри себя некоторое эталонное многообразие ограниченного объема.
Поставлена следующая задача: какое максимальное количество полостей (или отверстий в двумерном случае) может иметь тело (пластина) минимального объема при сформулированных выше ограничениях? Установлено, что для того, чтобы задача была математически корректно сформулирована, необходимо потребовать выполнения двух дополнительных условий: площади отверстий должны превосходить малую константу, а общая длина контуров внутренних отверстий в оптимальной фигуре должна быть минимальна среди варьируемых тел. Таким образом, в отличие от большинства работ по оптимальному проектированию упругопластических систем, когда осуществляется параметрический анализ приемлемых решений при заданной топологии, в работе проводится поиск топологического параметра связности проектируемой конструкции.
Изучается случай, когда коэффициент предельной нагрузки для эталонного многообразия достаточно велик, а площади допустимых отверстий в варьируемых пластинах превосходят малую константу. Приводятся аргументы, подтверждающие, что в этих условиях оптимальная фигура является стержневой системой Максвелла или Мичелла. В качестве примеров представлены микрофотографии типичных для биологических систем костных тканей. Показано, что в системе Мичелла не может быть внутренних отверстий большой площади. В то же время в стержневом наборе Максвелла могут существовать значительные по площади отверстия. Приводятся достаточные условия, когда в оптимальной по объему сплошной пластинке можно образовать отверстия. Результаты допускают обобщения и на трехмерные упругопластичные конструкции.
Статья завершается формулировкой математических проблем, вытекающих из постановки новой задачи оптимального проектирования упругопластических систем.
-
Математическое моделирование роста карциномы при динамическом изменении фенотипа клеток
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 879-902Просмотров за год: 46.В работе предлагается двумерная хемомеханическая модель роста инвазивной карциномы в ткани эпителия. Каждая клетка ткани представляет собой эластичный многоугольник, изменяющий свою форму и размеры под действием сил давления со стороны ткани. Средние размер и форма клеток были откалиброваны на основе экспериментальных данных. Модель позволяет описывать динамические деформации в ткани эпителия как коллективную эволюцию клеток, взаимодействующих посредством обмена механическими и химическими сигналами. Общее направление роста опухоли задается линейным градиентом концентрации питательного элемента. Рост и деформация ткани осуществляются за счет механизмов деления и интеркаляции клеток. В модели предполагается, что карцинома представляет собой гетерогенное образование, составленное из клеток с разным фенотипом, которые выполняют в опухоли различные функции. Основным параметром, определяющим фенотип клетки, является степень ее адгезии к примыкающей ткани. Выделено три основных фенотипа раковых клеток: эпителиальный (Э) фенотип представлен внутренними клетками опухоли, мезенхимальный (М) фенотип представлен одиночными клетками, промежуточный фенотип представлен фронтальными клетками опухоли. При этом в модели предполагается, что фенотип каждой клетки при определенных условиях может динамически меняться за счет эпителиально-мезенхимального (ЭМ) и обратного к нему (МЭ) переходов. Для здоровых клеток выделен основной Э-фенотип, который представлен обычными клетками с сильной адгезией друг к другу. Предполагается, что здоровые клетки, которые примыкают к опухоли, под воздействием последней испытывают вынужденный ЭМ-переход и образуют М-фенотип здоровых клеток. Численное моделирование показало, что в зависимости от значений управляющих параметров, а также комбинации возможных фенотипов здоровых и раковых клеток эволюция опухоли может приводить к разнообразным структурам, отражающим самоорганизацию клеток опухоли. Проводится сравнение структур, полученных в численном эксперименте, с морфологическими структурами, ранее выявленными в клинических исследованиях карциномы молочной железы: трабекулярной, солидной, тубулярной и альвеолярной структурами, а также дискретными клетками с амебоидным поведением. Обсуждается возможный сценарий морфогенеза и типа инвазивного поведения для каждой структуры. Описан процесс метастазирования, при котором одиночная раковая клетка амебоидного фенотипа, перемещающаяся за счет интеркаляций в ткани здорового эпителия, делится и испытывает МЭ-переход с появлением вторичной опухоли.
-
От однородного к неоднородному электронному аналогу ДНК
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
-
Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.
Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.
-
Физический анализ и математическое моделирование параметров области взрыва, произведенного в разреженной ионосфере
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 817-833В работе выполнен физический и численный анализ динамики и излучения продуктов взрыва, образующихся при проведении российско-американского эксперимента в ионосфере с использованием взрывного генератора на основе гексогена и тротила. Основное внимание уделяется анализу взаимосвязи излучения возмущенной области с динамикой процессов взрывчатого вещества и плазменной струи на поздней стадии. Проанализирован подробный химический состав продуктов взрыва и определены начальные концентрации наиболее важных молекул, способных излучать в инфракрасном диапазоне спектра, и приведены их излучательные константы. Определены начальная температура продуктов взрыва и показатель адиабаты. Проанализирован характер взаимопроникновения атомов и молекул сильно разреженной ионосферы в сферически расширяющееся облако продуктов. Разработана приближенная математическая модель динамики продуктов взрыва в условиях подмешивания к ним разреженного воздуха ионосферы и рассчитаны основные термодинамические характеристики системы. Показано, что на время 0,3–3 с происходит существенное повышение температуры разлетающейся смеси в результате ее торможения. Для анализа и сравнения на основе лагранжевого подхода разработан численный алгоритм решения двухобластной газодинамической задачи, в которой продукты взрыва и фоновый газ разделены контактной границей. Требовалось выполнение специальных условий на контактной границе при ее движении в покоящемся газе. В данном случае существуют определенные трудности в описании параметров продуктов взрыва вблизи контактной границы, что связано с большим различием в размерах массовых ячеек продуктов взрыва и фона из-за перепада плотности на 13 порядков. Для сокращения времени расчета данной задачи в области продуктов взрыва применялась неравномерная расчетная сетка. Расчеты выполнялись с различными показателями адиабаты. Получены результаты, наиболее важным из которых является температура, хорошо согласуется с результатами, полученными по методике, приближенно учитывающей взаимопроникновение. Получено поведение во времени коэффициентов излучения ИК-активных молекул в широком диапазоне спектра. Данное поведение качественно согласуется с экспериментами по ИК-свечению разлетающихся продуктов взрыва.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"