Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование достижимости цели в медицинском квесте
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.
Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.
Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.
Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.
Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.
Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.
Ключевые слова: медицинское обследование, ветвящийся случайный процесс, модель Гальтона – Ватсона, размытые фазовые переходы, конечные системы, условно-бесконечные траектории, макросистема, функция включения, области почти чистых фаз, параметр порядка, химический потенциал, фазовая диаграмма, критическое поведение. -
Нелинейные волны в молекулах ДНК, содержащих границу между двумя однородными областями
Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 209-215Просмотров за год: 4. Цитирований: 1 (РИНЦ).Исследуется распространение нелинейных волн через границу, разделяющую две различные однородные области в двойной полинуклеотидной цепочке. Расчеты проводятся в рамках модели ДНК, учитывающей различие в массах азотистых оснований и в расстояниях между сахаро-фосфатной цепочкой и центрами масс оснований, связанных с ней посредством β-гликозидной связи С1-N. Рассматриваются различные возможные комбинации однородных областей, расположенных слева и справа от границы, вычисляются изменения скорости (v) и размера (d) нелинейных волн вследствие прохождения границы.
-
Исследование образования комплекса флаводоксина и фотосистемы 1 методами прямого многочастичного компьютерного моделирования
Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 85-91Просмотров за год: 4. Цитирований: 2 (РИНЦ).С помощью компьютерной модели, основанной на методах многочастичного прямого моделирования и броуновской динамики, изучается кинетика образования комплекса между компонентами фотосинтетической электронтранспортной цепи — белком флаводоксином и мембранным комплексом фотосистемы 1. Моделируется броуновское движение нескольких сотен молекул флаводоксина, учитываются электростатические взаимодействия и сложная форма молекул. С помощью данной модели удалось воспроизвести экспериментальную немонотонную зависимость константы связывания флаводоксина с фотосистемой 1. Это говорит о том, что для описания такого вида зависимости достаточно учета только электростатических взаимодействий.
-
Аналоги фазовых переходов в экономике и демографии
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 209-218Рассмотрены эмпирические аналогии между кризисными процессами в социальных системах и фазовыми переходами с сопутствующими им критическими явлениями в «неживых» физических системах. Представлены качественное модельное описание историко-демографического прогресса (постепенная конденсация хозяйственных доменов с улучшением условий жизни населения), без дополнительных допущений объясняющее гиперболический рост населения Земли в I–XX вв. н. э., и модель современного мирового экономического кризиса как следствия спонтанной «конденсации капиталов», создавшей неуправляемые хозяйственные конгломераты, при свободной экспансии американской экономики в 1990-х и 2000-х гг. с ослаблением конкуренции («расширение в пустоту»).
Ключевые слова: социальные системы, фазовый переход, критические явления, кризис, демография, экономика.Просмотров за год: 9. Цитирований: 9 (РИНЦ). -
Стехиометрия метаболических путей в динамике клеточных популяций
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475Просмотров за год: 5. Цитирований: 1 (РИНЦ).Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.
-
Моделирование образования седиментационного и фильтрационного слоев методом дискретных элементов
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 105-120Просмотров за год: 1. Цитирований: 2 (РИНЦ).В работе предлагается численная модель седиментации и фильтрования суспензии, основанная на динамическом варианте метода дискретных элементов. Эта модель отражает поведение частиц на микро- и мезоуровне: образование пор, арок, хлопьев. Кроме того, предложенная модель качественно воспроизводит макроэффекты: осаждение слоя частиц, медленные процессы усадки этого слоя, уплотнения слоя под действием собственного веса частиц и приложенной извне силы.
-
Численное решение двумерной квазистатической задачи термопластичности: расчет остаточных термических напряжений при многопроходной сварке разнородных сталей
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 345-356Просмотров за год: 4. Цитирований: 6 (РИНЦ).Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.
-
Математическая модель гидридного фазового перехода в частице порошка симметричной формы
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.
Ключевые слова: гидрирование, дегидрирование, фазовый переход, математическое моделирование, симметрия формы.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Об исследовании плазменной турбулентности на основе анализа спектров
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 793-802Просмотров за год: 2. Цитирований: 4 (РИНЦ).В статье рассмотрены примеры анализа спектров экспериментальных данных для выявления характерных структур процессов, формирующих турбулентность в плазме. Основу метода составляет использование оригинального алгоритма, идеологически близкого к бутстреппроцедуре для одновыборочной задачи. В качестве базовой модели для описания тонкой структуры стохастических процессов предлагаются конечные сдвиг-масштабные смеси нормальных законов. Для отыскания статистических оценок (максимального правдоподобия) предполагается использование широко известного EM-алгоритма. Для нескольких серий спектров, полученных для разных режимов низкочастотной плазменной турбулентности, демонстрируется эффективность использования предложенного метода исследования.
-
Структура моделей перколяции узлов на трехмерных квадратных решетках
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 607-622Просмотров за год: 8. Цитирований: 5 (РИНЦ).В работе рассматривается структура моделей перколяции узлов на трехмерных квадратных решеткахпри различныхфор мах (1,π)-окрестности. Для этихмо делей предложены изо- и анизотропные модификации алгоритма инвазивной перколяции с (1,0)- и (1,π)-окрестностями. Все рассмотренные алгоритмы являются частными случаями анизотропного алгоритма инвазивной перколяции на n-мерной решетке с (1,π)-окрестностью. Данный алгоритм положен в основу библиотеки SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





