Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'модель':
Найдено статей: 773
  1. Орлова И.Н., Голубцова А.Н., Орлов В.А., Орлов Н.В.
    Исследование достижимости цели в медицинском квесте
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1149-1179

    В работе представлено экспериментальное исследование древовидной структуры, возникающей при медицинском обследовании. При каждой встрече с медицинским специалистом пациент получает некоторое количество направлений на консультации других специалистов или на анализы. Возникает дерево направлений, каждую ветвь которого должен пройти пациент. В зависимости от разветвленности дерева оно может быть как конечным (и в этом случае обследование может быть завершено), так и бесконечным, когда цель пациента не может быть достигнута. В работе как экспериментально, так и теоретически изучаются критические свойства перехода системы из леса конечных деревьев в лес бесконечных в зависимости от вероятностных характеристик дерева.

    Для описания предлагается модель, в которой дискретная функция вероятности числа ветвей на узле повторяет динамику непрерывного гауссового распределения. Характеристики распределения Гаусса (математическое ожидание $x_0$, среднеквадратичное отклонение $\sigma$) являются параметрами модели. В выбранной постановке задача относится к проблематике ветвящихся случайных процессов (ВСП) в неоднородной модели Гальтона – Ватсона.

    Экспериментальное изучение проводится путем численного моделирования на конечных решетках. Построена фазовая диаграмма, определены границы областей различных фаз. Проведено сравнение с фазовой диаграммой, полученной из теоретических критериев для макросистем, установлено адекватное соответствие. Показано, что на конечных решетках переход является размытым.

    Описание размытого фазового перехода проведено с помощью двух подходов. В первом (стандартном) подходе переход описывается с помощью так называемой функции включения, имеющей смысл доли одной из фаз в общем множестве. Установлено, что такой подход в данной системе неэффективен, поскольку найденное положение условной границы размытого перехода определяется только размером выбранной экспериментальной решетки и не несет объективного смысла.

    Предлагается второй (оригинальный) подход, основанный на введении в рассмотрение параметра порядка, равного обратной средней высоте дерева, и анализа его поведения. Установлено, что динамика такого параметра порядка в сечениях $\sigma = \text{const}$ с очень небольшими отличиями имеет вид распределения Ферми – Дирака ($\sigma$ выполняет ту же функцию, что и температура для распределения Ферми – Дирака, $x_0$ — функцию энергии). Для параметра порядка подобрано эмпирическое выражение, введен и рассчитан аналог химического потенциала, который и имеет смысл характерного масштаба параметра порядка, то есть тех значений $x_0$, при которых условно можно считать, что порядок сменяется беспорядком. Этот критерий положен в основу определе- ния границы условного перехода в данном подходе. Установлено, что эта граница соответствует средней высоте дерева, равной двум поколениям. На основании обнаруженных свойств предложены рекомендации для медицинских учреждений, позволяющие контролировать обеспечение конечности траектории пациентов.

    Рассмотренная модель и метод ее описания с помощью условно-бесконечных деревьев имеют приложение ко многим иерархическим системам. К таким системам можно отнести сети маршрутизации интернет-соединений, бюрократические сети, торговые, логистические сети, сети цитирования, игровые стратегии, задачи популяционной динамики и пр.

  2. Якушевич Л.В., Савин А.В., Маневич Л.И.
    Нелинейные волны в молекулах ДНК, содержащих границу между двумя однородными областями
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 209-215

    Исследуется распространение нелинейных волн через границу, разделяющую две различные однородные области в двойной полинуклеотидной цепочке. Расчеты проводятся в рамках модели ДНК, учитывающей различие в массах азотистых оснований и в расстояниях между сахаро-фосфатной цепочкой и центрами масс оснований, связанных с ней посредством β-гликозидной связи С1-N. Рассматриваются различные возможные комбинации однородных областей, расположенных слева и справа от границы, вычисляются изменения скорости (v) и размера (d) нелинейных волн вследствие прохождения границы.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  3. Абатурова А.М., Коваленко И.Б., Ризниченко Г.Ю., Рубин А.Б.
    Исследование образования комплекса флаводоксина и фотосистемы 1 методами прямого многочастичного компьютерного моделирования
    Компьютерные исследования и моделирование, 2009, т. 1, № 1, с. 85-91

    С помощью компьютерной модели, основанной на методах многочастичного прямого моделирования и броуновской динамики, изучается кинетика образования комплекса между компонентами фотосинтетической электронтранспортной цепи — белком флаводоксином и мембранным комплексом фотосистемы 1. Моделируется броуновское движение нескольких сотен молекул флаводоксина, учитываются электростатические взаимодействия и сложная форма молекул. С помощью данной модели удалось воспроизвести экспериментальную немонотонную зависимость константы связывания флаводоксина с фотосистемой 1. Это говорит о том, что для описания такого вида зависимости достаточно учета только электростатических взаимодействий.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  4. Словохотов Ю.Л.
    Аналоги фазовых переходов в экономике и демографии
    Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 209-218

    Рассмотрены эмпирические аналогии между кризисными процессами в социальных системах и фазовыми переходами с сопутствующими им критическими явлениями в «неживых» физических системах. Представлены качественное модельное описание историко-демографического прогресса (постепенная конденсация хозяйственных доменов с улучшением условий жизни населения), без дополнительных допущений объясняющее гиперболический рост населения Земли в I–XX вв. н. э., и модель современного мирового экономического кризиса как следствия спонтанной «конденсации капиталов», создавшей неуправляемые хозяйственные конгломераты, при свободной экспансии американской экономики в 1990-х и 2000-х гг. с ослаблением конкуренции («расширение в пустоту»).

    Просмотров за год: 9. Цитирований: 9 (РИНЦ).
  5. Минкевич И.Г.
    Стехиометрия метаболических путей в динамике клеточных популяций
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 455-475

    Проанализированы проблемы соответствия кинетических моделей клеточного метаболизма описываемому ими объекту. Изложены основы стехиометрии полного метаболизма и его больших частей. Описана биоэнергетическая форма стехиометрии, основанная на универсальной единице восстановленности химических соединений (редоксон). Выведены уравнения материально-энергетического баланса (биоэнергетической стехиометрии) метаболических потоков, в том числе баланса протонов с высоким электрохимическим потенциалом μH+ и макроэргических соединений. Получены соотношения, выражающие выход биомассы, скорость потребления источника энергии для роста и другие физиологически важные величины через биохимические характеристики клеточной энергетики. Вычислены значения максимального энергетического выхода биомассы при использовании клетками различных источников энергии. Эти значения совпадают с экспериментальными данными.

    Просмотров за год: 5. Цитирований: 1 (РИНЦ).
  6. Дьяченко Е.Н., Дик И.Г.
    Моделирование образования седиментационного и фильтрационного слоев методом дискретных элементов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 105-120

    В работе предлагается численная модель седиментации и фильтрования суспензии, основанная на динамическом варианте метода дискретных элементов. Эта модель отражает поведение частиц на микро- и мезоуровне: образование пор, арок, хлопьев. Кроме того, предложенная модель качественно воспроизводит макроэффекты: осаждение слоя частиц, медленные процессы усадки этого слоя, уплотнения слоя под действием собственного веса частиц и приложенной извне силы.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  7. Разработана двумерная математическая модель для оценки напряжений в сварных соединениях, формируемых при многопроходной сварке многослойных сталей. Основой модели является система уравнений, которая включает вариационное уравнение Лагранжа инкрементальной теории пластичности и вариационное уравнение теплопроводности, выражающее принцип М. Био. Вариационно-разностным методом решается задача теплопроводности для расчета нестационарного температурного поля, а затем на каждом шаге по времени – квазистатическая задача термопластичности. Разностная схема построена на треугольных сетках, что дает некоторое повышение точности при описании положения границ раздела структурных элементов.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
  8. Маничева С.В., Чернов И.А.
    Математическая модель гидридного фазового перехода в частице порошка симметричной формы
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 569-584

    В статье предложена математическая модель фазового перехода на примере гидрирования/дегидрирования порошка металла. Рассматривается одна частица, форма которой обладает некоторой симметрией. Шар, цилиндр и плоская пластина являются частными случаями симметричных форм. Модель описывает как сценарий «сжимающегося ядра» (формирование слоя новой фазы на поверхности частицы с его последующим утолщением), так и сценарий «образования и роста зародышей», при которых сплошной слой не формируется до полного исчезновения старой фазы. Модель представляет собой неклассическую диффузионную краевую задачу со свободной границей и нелинейными граничными условими III рода. Предположения симметрии позволяют свести задачу к одной пространственной переменной. Модель апробирована на серии экспериментальных данных. Показано, что влияние формы частиц на кинетику несущественно. Также показано, что ансамбль частиц различных форм с распределением по размерам может быть аппроксимирован одной частицей «среднего» размера простой формы, что оправдывает использование в моделях упрощающих предположений.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  9. Горшенин А.К., Королев В.Ю., Малахов Д.В., Скворцова Н.Н.
    Об исследовании плазменной турбулентности на основе анализа спектров
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 793-802

    В статье рассмотрены примеры анализа спектров экспериментальных данных для выявления характерных структур процессов, формирующих турбулентность в плазме. Основу метода составляет использование оригинального алгоритма, идеологически близкого к бутстреппроцедуре для одновыборочной задачи. В качестве базовой модели для описания тонкой структуры стохастических процессов предлагаются конечные сдвиг-масштабные смеси нормальных законов. Для отыскания статистических оценок (максимального правдоподобия) предполагается использование широко известного EM-алгоритма. Для нескольких серий спектров, полученных для разных режимов низкочастотной плазменной турбулентности, демонстрируется эффективность использования предложенного метода исследования.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  10. Москалев П.В.
    Структура моделей перколяции узлов на трехмерных квадратных решетках
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 607-622

    В работе рассматривается структура моделей перколяции узлов на трехмерных квадратных решеткахпри различныхфор мах (1,π)-окрестности. Для этихмо делей предложены изо- и анизотропные модификации алгоритма инвазивной перколяции с (1,0)- и (1,π)-окрестностями. Все рассмотренные алгоритмы являются частными случаями анизотропного алгоритма инвазивной перколяции на n-мерной решетке с (1,π)-окрестностью. Данный алгоритм положен в основу библиотеки SPSL, выпущенной под лицензией GNU GPL-3 с использованием свободного языка программирования R.

    Просмотров за год: 8. Цитирований: 5 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.