Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'моделирование процесса':
Найдено статей: 310
  1. Малков С.Ю.
    Режимы с обострением в истории человечества или воспоминания о будущем
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947

    В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.

  2. Савин С.И., Ворочаева Л.Ю., Куренков В.В.
    Математическое моделирование тенсегрити-роботов с жесткими стержнями
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830

    В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.

    Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.

    В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.

    В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.

  3. Васильев Е.В., Пержу А.В., Король А.О., Капитан Д.Ю., Рыбин А.Е., Солдатов К.С., Капитан В.Ю.
    Численное моделирование двумерных магнитных скирмионных структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061

    В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.

    В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.

    Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.

    Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.

  4. Булатов А.А., Сысоев А.А., Иудин Д.И.
    Моделирование инициации молнии на базе динамического графа
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125-147

    Несмотря на многочисленные достижения современной науки, до сих пор остается нераскрытой проблема зарождения молниевого разряда в безэлектродном грозовом облаке, максимальная напряженность электрического поля в котором примерно на порядок меньше диэлектрической прочности воздуха. Хотя не вызывает сомнений тот факт, что развитие разряда начинается с появления в облаке положительных стримеров, развитие которых становится возможным при примерно вдвое меньших значениях электрического поля по сравнению с отрицательными, на настоящий момент остается неизученным вопрос о том, каким образом холодные слабопроводящие стримерные системы объединяются в горячий хорошо проводящий лидерный канал, способный к самостоятельному распространению за счет эффективной поляризации в относительно слабом внешнем поле. В данной работе представлена самоорганизующаяся транспортная модель, реализованная на примере формирования фрактального древа электрического разряда в грозовом облаке и направленная на численное моделирование процесса начальной стадии развития молниевого разряда. Среди инновационных особенностей нашего подхода, отсутствующих в других численных моделях развития молнии, можно выделитьот сутствие привязки элементов проводящей структуры графа к узлам пространственной решетки, высокое пространственно-временное разрешение и учет временной эволюции электрических параметров транспортных каналов. Кроме того, модельучи тывает известную из многочисленных экспериментов асимметрию полей развития положительных и отрицательных стримеров. В рамках используемого подхода результирующий хорошо проводящий лидерный канал формируется за счет коллективного эффекта объединения токов десятков тысяч взаимодействующих между собой стримеров, каждый из которых изначально обладает пренебрежимо малой проводимостью и температурой, не отличающейся от температуры окружающей среды. Модельное биполярное древо представляет собой направленный граф (имеет положительную и отрицательную части) и имеет морфологические и электро-динамические характеристики, промежуточные между лабораторной длинной искрой и развитой молнией. Модель имеет универсальный характер, что при необходимости позволяет использовать ее в рамках других задач, связанных с исследованием транспортных (в широком смысле слова) сетей.

  5. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

  6. Кащенко Н.М., Ишанов С.А., Зубков Е.В.
    Численная модель переноса в задачах неустойчивостей низкоширотной ионосферы Земли с использованием двумерной монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1011-1023

    Целью работы является исследование монотонной конечно-разностной схемы второго порядка точности, созданной на основе обобщения одномерной Z-схемы. Исследование проведено для модельных уравнений переноса несжимаемой среды. В работе описано двумерное обобщение Z-схемы с нелинейной коррекцией, использующей вместо потоков косые разности, содержащие значения из разных временных слоев. Численно проверена монотонность полученной нелинейной схемы для функций-ограничителей двух видов, как для гладких решений, так и для негладких, и получены численные оценки порядка точности построенной схемы. Построенная схема является абсолютно устойчивой, но теряет свойство монотонности при превышении шага Куранта. Отличительной особенностью предложенной конечно-разностной схемы является минимальность ее шаблона.

    Построенная численная схема предназначена для моделей плазменных неустойчивостей различных масштабов в низкоширотной ионосферной плазме Земли. Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере в условиях возникновения неустойчивости Рэлея – Тейлора и плазменных структур с меньшими масштабами, механизмами генерации которых являются неустойчивости других типов, что приводит к явлению F-рассеяния. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направле- нии предполагается выполнение условия несжимаемости плазмы.

  7. Переварюха А.Ю.
    Модели популяционного процесса с запаздыванием и сценарий адаптационного противодействия инвазии
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 147-161

    Изменения численности y образующихся популяций могут развиваться по нескольким динамическим сценариям. Для стремительных биологических инвазий оказывается важным фактор времени выработки реакции противодействия со стороны биотического окружения. Известны два классических эксперимента с разным завершением противоборства биологических видов. В опытах Гаузе с инфузориями вселенный хищник после кратких осцилляций полностью уничтожал свой ресурс, так его $r$-параметр для созданных условий стал избыточен. Собственная репродуктивная активность не регулировалась дополнительными факторами и в результате становилась критичной для вселенца. В экспериментах Утиды с жуками и выпущенными паразитическими осами виды сосуществовали. В ситуации, когда популяцию с высоким репродуктивным потенциалом регулируют несколько естественных врагов, могут возникать интересные динамические эффекты, наблюдавшиеся у фитофагов в вечнозеленом лесу Австралии. Паразитические перепончатокрылые, конкурируя между собой, создают для быстро размножающихся вредителей псиллид систему регуляции с запаздыванием, когда допускается быстрое увеличение локальной популяции, но не превышающее порогового значения численности вредителя. В работе предложена модель на основе дифференциального уравнения с запаздыванием, описывающая сценарий адаптационной регуляции для популяции с большим репродуктивным потенциалом при активном, но запаздывающем противодействии с пороговой регуляцией данного вновь возникшего воздействия. За кратким максимумом следует быстрое сокращение численности, но минимизация не становится критической для популяции. Показано, что усложнение функции регуляции биотического противодействия приводит к стабилизации динамики после прохождения минимума численности быстро размножающимся видом. Для гибкой системы переходные режимы «рост/кризис» ведут к поиску нового равновесия в эволюционном противостоянии.

  8. В работе исследуется влияние быстрого локального выделения тепла вблизи обтекаемой сверхзвуковым потоком газа (воздуха) поверхности на область отрыва, возникающую при быстром его повороте. Данная поверхность состоит из двух плоскостей, образующих при пересечении тупой угол, так что при обтекании этой поверхности сверхзвуковой поток газа поворачивается на положительный угол, что формирует косой скачок уплотнения, взаимодействующий с пограничным слоем и вызывающий отрыв потока. Быстрый локальный нагрев газа над обтекаемой поверхностью моделирует протяженный искровой разряд субмикросекундной длительности, пересекающий поток. Газ, нагретый в зоне разряда, взаимодействует с областью отрыва. Течение можно считать плоским, поэтому численное моделирование проводится в двумерной постановке. Численное моделирование проведено для ламинарного режима течения с использованием солвера sonicFoam пакета программ OpenFOAM.

    В работе описан способ построения двумерной расчетной сетки с использованием шестигранных ячеек. Выполнено исследование сеточной сходимости. Приводится методика задания начальных профилей параметров течения на входе в расчетную область, позволяющая сократить время счета при уменьшении количества расчетных ячеек. Описан способ нестационарного моделирования процесса быстрого локального нагрева газа, заключающегося в наложении дополнительных полей повышенных значений давления и температуры, вычисленных из величины энергии, вложенной в набегающий сверхзвуковой поток газа, на соответствующие поля величин, предварительно полученные в стационарном случае. Параметры энерговклада в поток, соответствующие параметрам процесса инициирования электрического разряда, а также параметры набегающего потока близки к экспериментальным величинам.

    При анализе данных численного моделирования получено, что быстрый локальный нагрев приводит к возникновению газодинамического возмущения (квазицилиндрической ударной волны и нестационарного завихренного течения), которое при взаимодействии с областью отрыва приводит к смещению точки отрыва вниз по потоку. В работе рассмотрен вопрос о влиянии энергии, затраченной на локальный нагрев газа, и положения места нагрева относительно точки отрыва на величину максимального ее смещения.

  9. В работе исследуется дискретная модификация модели А.П. Михайлова «власть – общество», ранее предложенная автором. Эта модификация основана на стохастическом клеточном автомате, то есть имеет микродинамику, принципиально отличную от базовой непрерывной, основанной на дифференциальных уравнениях модели. При этом макродинамика дискретной модификации, как показано в предыдущих работах, совпадает с макродинамикой исходной модели. Этот важный результат, однако, вызывает вопрос, в чем смысл использования дискретной модели. Ее главной особенностью является гибкость, позволяющая добавлять в рассмотрение самые разные факторы, учет которых в непрерывной модели либо приводит к существенному росту вычислительной сложности, либо в принципе невозможен.

    В данной работе рассматриваются несколько примеров подобного расширения области применимости модели, при помощи которого решается ряд прикладных задач.

    Одна из модификаций модели учитывает экономические связи между регионами и муниципалитетами, что не могло быть исследовано в базовой модели. Вычислительные эксперименты подтвердили улучшение социально-экономических показателей системы при наличии таких связей.

    Вторая модификация включает в себя возможность внутренней миграции в системе. С ее помощью был получен ряд результатов, связанных с социально-экономическим развитием более благополучного региона, притягивающего мигрантов.

    Кроме этого, была исследована динамика системы при изменении количества регионов и муниципалитетов в системе. Показано негативное влияние этого процесса на социально-экономические показатели системы и найдено возможное управление, имеющее целью преодоление этого негативного влияния.

    Результатами данного исследования, таким образом, явились как решение отдельных прикладных задач, так и демонстрация на их примере более широких возможностей дискретной модели по сравнению с базовой непрерывной.

  10. Нестерова А.В., Денисова Н.В., Минин С.М., Анашбаев Ж.Ж., Усов В.Ю.
    Определение поправочных коэффициентов при количественной оценке костных патологических очагов методом гамма-эмиссионной томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 677-696

    При обследовании методом однофотонной эмиссионной компьютерной томографии (ОФЭКТ) пациентам с заболеваниями костной системы вводится радиофармпрепарат (РФП), который специфическим образом накапливается в патологических очагах. Количественные оценки накопления РФП в очагах важны для определения стадии заболевания, прогнозирования его течения и разработки персонализированных терапевтических стратегий. Исследования точности количественных оценок обычно проводятся на основе клинических испытаний in vitro с использованием стандартизированного вещественного фантома NEMA IEC с шестью сферами, имитирующими патологические очаги разных размеров. Однако возможности проведения таких многопараметрических экспериментальных измерений ограничены из-за высокойстоимости и лучевой нагрузки на исследователей. В данной работе развит альтернативный подход на основе имитационного компьютерного моделирования in silico с использованием цифрового двойника фантома NEMA IEC. Компьютерные эксперименты могут проводиться без ограничений с разными сценариями. По аналогии с клиническими испытаниями в численном моделировании оценивался коэффициент восстановления (RCmax), равный отношению максимального значения полученного решения в очаге к его точной величине. Условия моделирования были ориентированы на параметры клинических обследований методом ОФЭКТ/КТ с 99mTc пациентов с заболеваниями и поражениями костной системы. Впервые выполнены исследования зависимости RCmax от величины отношения «очаг/фон» и влияния постфильтрации решения. В численных экспериментах были получены краевые артефакты на изображениях очагов, аналогичные тем, которые наблюдались при измерениях на реальном фантоме NEMA IEC и в клинической практике при обследовании пациентов. Краевые артефакты приводят к нестабильности поведения решения в итерационном процессе и к ошибкам в оценке накопления РФП в очагах. Показано, что постфильтрация снижает влияние этих артефактов, обеспечивая стабильное решение. Однако при этом существенно занижаются оценки решения в небольших очагах, поэтому предложено учитывать полученные в данной работе поправочные коэффициенты при количественной оценке активности в очагах диаметром менее 20 мм.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.