Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Хаотизация течения под действием объемной силы
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.
Ключевые слова: турбулентность, завихренность, энстрофия, палинстрофия, скорость диссипации, схема КАБАРЕ, схема МакКормака, пакет OpenFOAM. -
Моделирование теплового поля неподвижных симметричных тел в разреженной низкотемпературной плазме
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 73-91В работе исследуется процесс самосогласованной релаксации области возмущений, созданных в разреженной бинарной низкотемпературной плазме неподвижным заряженным шаром или цилиндром с абсорбирующей поверхностью. Особенностью подобных задач является их самосогласованный кинетический характер, при котором нельзя отделить процессы переноса в фазовом пространстве и формирования электромагнитного поля. Представлена математическая модель, позволяющая описывать и анализировать состояние газа, электрическое и тепловое поле в окрестности тела. Многомерность кинетической формулировки создает определенные проблемы при численном решении, поэтому для задачи подобрана криволинейная система неголономных координат, которая минимизирует ее фазовое пространство, что способствует повышению эффективности численных методов. Для таких координат обоснована и проанализирована форма кинетического уравнения Власова. Для его решения использован вариант метода крупных частиц с постоянным форм-фактором. В расчетах применялась подвижная сетка, отслеживающая смещение в фазовом пространстве носителя функции распределения, что дополнительно уменьшило объем контролируемой области фазового пространства. Раскрыты ключевые детали модели и численного метода. Модель и метод реализованы в виде кода на языке Matlab. На примере решения задачи для шара показано наличие в возмущенной зоне существенного неравновесия и анизотропии в распределении частиц по скорости. По результатам расчетов представлены картины эволюции структуры функции распределения частиц, профилей основных макроскопических характеристик газа — концентрации, тока, температуры и теплового потока, характеристик электрического поля в возмущенной области. Установлен механизм разогрева притягивающихся частиц в возмущенной зоне и показаны некоторые важные особенности процесса формирования теплового потока. Получены результаты, хорошо объяснимые с физической точки зрения, что подтверждает адекватность модели и корректность работы программного инструмента. Отмечаются создание и апробация основы для разработки в перспективе инструментов решения и более сложных задач моделирования поведения ионизированных газов вблизи заряженных тел.
Работа будет полезной специалистам в области математического моделирования, процессов тепло- и массообмена, физики низкотемпературной плазмы, аспирантам и студентам старших курсов, специализирующимся в указанных направлениях.
-
Математическая модель для оценки зоны интенсивного испарения газового конденсата при выбросах на мелководных скважинах
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 243-259Безопасное проведение аварийно-восстановительных работ на аварийных морских газоконденсатных скважинах возможно при учете опасных факторов, препятствующих проведению противофонтанных мероприятий. Одним из таких факторов является загазованность района работ вследствие выхода из водной толщи большого количества легкого, по сравнению с воздухом, природного газа, а также паров более тяжелых компонентов газового конденсата (ГК). Для оценки распределения взрывоопасных концентраций паров нефтепродукта в приводном слое атмосферы необходимо определить характеристики источника загазованности. На основании анализа теоретических работ, посвященных формированию поля скорости в верхнем слое моря вследствие выхода на поверхность большого количества газа, предложена аналитическая модель для расчета размеров области, в которой происходит испарение значительного количества поступающего на поверхность ГК при авариях на мелководных скважинах. Рассматривается стационарный режим истечения пластового продукта при открытом фонтанировании газонефтяных скважин морского базирования при подводном расположении их устья. Построена малопараметрическая модель испарения нефтепродуктов из пленок различной толщины. Показано, что размер зоны интенсивного испарения ГК при подводном выбросе на мелководных скважинах определяется объемным потоком жидкой фракции ГК, его фракционным составом и выбранным порогом для оценки потока паров нефтепродукта в атмосферу. В контексте данной работы мелководными называются скважины при дебите газа от 1 до 20 млн м3 на глубинах порядка 50–200 метров. В этом случае струя пластового флюида из устья скважины на морском дне трансформируется в пузырьковый шлейф, типичная для летне-осеннего периода стратификация водной толщи не ограничивает выход шлейфа на поверхность моря, а скорость подъема пузырьков позволяет не принимать во внимание процесс растворения газа. Проведенный анализ был ограничен условиями близкими к штилевым. Такие условия благоприятны для проведения морских операций, однако неблагоприятны с точки зрения рассеяния высоких концентраций паров нефтепродуктов в приводном слое атмосферы над морем. В результате проведенной работы предложено аналитическое соотношение для приближенной оценки зоны интенсивного испарения ГК.
-
Исследование возможности обнаружения следов опасных веществ на основе детекции паров
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 451-463В статье исследуется возможность обнаружения следов опасных веществ (взрывчатых и наркотических) на основе детекции их паров в воздухе. Актуальность работы обусловлена задачами противодействия террористическим угрозам и наркотрафику, где критически важно определять даже следовые количества веществ. Основное внимание уделено математическому моделированию испарения тонкого слоя вещества с поверхности, основанному на молекулярно-кинетической теории. Предложена универсальная модель, учитывающая физико-химические свойства веществ, температуру окружающей среды, адгезию к поверхности и начальную массу слоя. На основе уравнений Герца – Кнудсена – Ленгмюра и Клаузиуса – Клапейрона получены аналитические выражения для времени полного испарения, предельной массы паров и динамики процесса. Выявлен безразмерный параметр $\gamma$, определяющий предельные условия испарения. Показано, что адгезия вещества (коэффициент $\alpha$) влияет на скорость испарения, но не на конечную массу паров. Проведены расчеты для шести модельных веществ (TNT, RDX, PETN, амфетамин, кокаин, героин) с широким диапазоном свойств. Установлено, что при комнатной температуре и поверхностной концентрации 100 нг/см2 большинство веществ испаряются полностью, за исключением RDX, который остается на поверхности на 84%. Время испарения варьируется от долей секунды (амфетамин) до нескольких часов (героин). Для веществ с низкой летучестью определена максимальная масса, способная испариться при заданных условиях. Новизна работы заключается в разработке универсальной модели, применимой для широкого класса опасных веществ, и в выявлении ключевых параметров, определяющих процесс испарения. Полученные результаты позволяют оценить пределы обнаружения следов веществ методами, основанными на регистрации паров, и могут быть использованы при проектировании систем безопасности.
Ключевые слова: тонкий слой, испарение, опасные вещества, масса паров, поверхностная концентрация, математическая модель. -
Математическое моделирование и оптимальное управление процессом осаждения гальванического покрытия в многоанодной ванне с учетом изменения концентрации компонентов электролита
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 193-203Просмотров за год: 4. Цитирований: 4 (РИНЦ).Данная работа рассматривает задачу оптимального управления гальваническим процессом в многоанодной ванне. Построена нестационарная математическая модель гальванического процесса, которая учитывает изменения концентрации компонентов электролита. Продемонстрировано обоснование выбора вида управляющих экстремалей на примере гальванического процесса хромирования в стандартном электролите.
-
Модель анизотропной прочности со скалярным параметром поврежденности
Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 937-942Просмотров за год: 1.В работе обсуждается возможность моделирования анизотропии прочности слоистой упругой среды с использованием скалярного параметра поврежденности. Сформулированы термодинамически согласованные определяющие уравнения. С помощью пакета SIMULIA/Abaqus моделируется процесс растяжения и сжатия образцов. Результаты расчета с использованием предложенной модели сравниваются с известными из литературы экспериментальными данными и предсказаниями традиционных моделей.
-
Работы А. С. Комарова по клеточно-автоматному моделированию популяционно-онтогенетических процессов у растений
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 285-295Рассмотрены возможности моделирования в технике клеточных автоматов применительно к травянистым растениям и кустарничкам. Приводятся основные положения дискретного описания онтогенезов растений, на которых основывается математическое моделирование. В обзоре обсуждаются основные результаты, полученные с использованием моделей и раскрывающие закономерности функционирования ценопопуляций и сообществ. Описана модель CAMPUS и результаты компьютерного эксперимента по разрастанию двух клонов брусники с разной геометрией побегов. Публикация посвящена работам профессора А. С. Комарова, основоположника направления; дан список его основных публикаций по этой тематике.
Ключевые слова: компьютерные модели, индивидуально-ориентированный подход.Просмотров за год: 2. Цитирований: 6 (РИНЦ). -
Численное моделирование воздушного охлаждения емкости для десублимации компонентов газовой смеси
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 521-529Просмотров за год: 3. Цитирований: 1 (РИНЦ).В химической технологии для получения очищенного конечного продукта часто используется процесс десублимации. Для этого используются охлаждаемые жидким азотом или холодным воздухом емкости. Смесь газов протекает внутри емкости и охлаждается до температуры конденсации или десублимации некоторых компонентов газовой смеси. Конденсированные компоненты оседают на стенках емкости. В статье представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом. Математическая модель основана на уравнениях газовой динамики и описывает течение охлажденного воздуха в трубопроводе и воздушном теплообменнике с учетом теплообмена и трения. Теплота фазового перехода учитывается в граничном условии для уравнения теплопроводности путем задания потока тепла. Перенос тепла в теплоизолированных стенках трубопровода и в стенках емкости описывается нестационарными уравнениями теплопроводности. Решение системы уравнений проводится численно. Уравнения газовой динамики решаются методом С. К. Годунова. Уравнения теплопроводности решаются по неявной разностной схеме. В статье приведены результаты расчетов охлаждения двух последовательно установленных емкостей. Начальная температура емкостей равна 298 К. Холодный воздух течет по трубопроводу, через теплообменник первой емкости, затем по трубопроводу в теплообменник второй емкости. За 20 минут емкости остывают до рабочей температуры. Температура стенок емкостей отличается от температуры воздуха на величину не более чем 1 градус. Поток охлажденного воздуха позволяет поддерживать изотермичность стенок емкости в процессе десублимации компонентов из газовой смеси. Приведены результаты аналитической оценки времени охлаждения емкости и разности температуры между стенками емкости и воздухом в режиме десублимации паров. Аналитическая оценка основана на определении времени термической релаксации температуры стенок емкости. Результаты аналитических оценок удовлетворительно совпадают с результатами расчетов по представленной модели. Предложенный подход позволяет проводить расчет охлаждения емкостей потоком холодного воздуха, подаваемого по трубопроводной системе.
-
Исследование точечной математической модели полимеризации фибрина
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 247-258Функциональное моделирование процессов свертывания крови, в частности возникновения фибрин–полимерных сгустков, имеет большое значение для прикладных вопросов медицинской биофизики. Несмотря на некоторые неточности в математических моделях, качественные результаты представляют огромный интерес для экспериментаторов как средство анализа возможных вариантов развития их работ. При достижении хорошего количественного совпадения с экспериментальными результатами такие модели могут быть использованы для технологических применений. Целью данной работы является моделирование процесса многоступенчатой полимеризации фибрина и сопряженного с ними золь-гель-перехода — возникновения фибрин-полимерной сетки в точечной системе. Для программной реализации и численных экспериментов используется неявный метод Розенброка второго порядка с комплексными коэффициентами (CROS). В работе представлены результаты моделирования и проведен анализ чувствительности численных решений к коэффициентам математической модели методами вариации. Показано, что в физиологическом диапазоне параметров констант модели существует лаг-период 20 секунд между началом реакции и возникновением зародышей фибрин-полимерной сетки, что хорошо соответствует экспериментальным наблюдениям подобных систем. Показана возможность появления нескольких $(n = 1–3)$ последовательных золь-гель-переходов. Такое необычное поведение системы является прямым следствием наличия нескольких фаз в процессе полимеризации фибрина. На последнем этапе раствор олигомеров фибрина длины 10 может достичь полуразбавленного состояния. Это, в свою очередь, приведет к исключительно быстрой кинетике формирования фибрин-полимерной сетки, управляемой вращательной диффузией олигомеров. Если же состояние полуразбавленного раствора не достигается, то образование фибрин-полимерной сетки контролируется трансляционной диффузией, которая является существенно более медленным процессом. Такой дуализм в процессе золь-гель-перехода привел к необходимости введения функции переключения в уравнения для кинетики образования фибрин-полимера. Ситуация с последовательными золь-гель-переходами соответствует экспериментальным системам, где вследствие физических процессов, таких как пресипитация, фибрин-полимерная сетка может быть быстро удалена из объема.
Ключевые слова: фибрин, фибрин-полимер, свертывание крови, математическая модель, метод Розенброка (CROS), анализ чувствительности.Просмотров за год: 8. -
Динамическая теория информации как базис естественно-конструктивистского подхода к моделированию мышления
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 433-447Рассматриваются основные положения и выводы динамической теории информации (ДТИ). Показано, что ДТИ дает возможность выявить два существенно важных типа информации: объективную (безусловную) и субъективную (условную). Выделяется два способа получения информации: рецепция (восприятие уже существующей информации) и генерация информации (производство новой). Показано, что процессы генерации и рецепции информации должны происходить в двух разных подсистемах одной когнитивной системы. Обсуждаются основные положения естественно-конструктивистского подхода к моделированию мышления. Показано, что любой нейроморфный подход сталкивается с проблемой «провала в описании «Мозга» и «Разума»», т. е. провала между объективно измеримой информации об ансамбле нейронов («Мозг») и субъективной информацией о сознании человека («Разум»). Обсуждается естественно-конструктивистская когнитивная архитектура, разработанная в рамках данного подхода. Она представляет собой сложную блочно-иерархическую комбинацию, собранную из разных нейропро-цессоров. Основная конструктивная особенность этой архитектуры состоит в том, что вся система разделена на две подсистемы (по аналогии с полушариями головного мозга). Одна из подсистем отвечает за восприятие новой информации, обучение и творчество, т. е. за генерацию информации. Другая подсистема отвечает за обработку уже существующей информации, т. е. рецепцию информации. Показано, что низший (нулевой) уровень иерархии представлен процессорами, которые должны записывать образы реальных объектов (распределенная память) как отклик на сенсорные сигналы, что представляет собой объективную информацию (и относится к «Мозгу»). Остальные уровни иерархии представлены процессорами, содержащими символы записанных образов. Показано, что символы представляют собой субъективную (условную) информацию, создаваемую самой системой и обеспечивающую ее индивидуальность. Совокупность высоких уровней иерархии, содержащих символы абстрактных понятий, дает возможность интерпретировать понятия «сознание», «подсознание», «интуиция», относящиеся к области «Разума», в терминах ансамбля нейронов. Таким образом, ДТИ дает возможность построить модель, позволяющую проследить, как на основе «Мозга» возникает «Разум».
Ключевые слова: информация, когнитивный процесс, образ, символ, нейропроцессор, шум, принцип почернения связей, вербализация, борьба условных информаций.Просмотров за год: 6.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





