Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.
-
Неявный алгоритм решения уравнений движения несжимаемой жидкости
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1009-1023Для решения уравнений Навье – Стокса в случае несжимаемых течений разработано большое количество методов, наиболее популярными из которых являются методы с коррекцией скорости по алгоритму SIMPLE, аналогом которого является метод расщепления по физическим переменным. Данные методы, разработанные еще в прошлом веке, использовались для решения достаточно простых задач — расчета как стационарных течений, так и нестационарных, в которых границы расчетной области были неподвижны. В настоящее время задачи вычислительной гидродинамики существенно усложнились. Интерес представляют задачи с движением тел в расчетной области, движением контактных границ, кавитацией и задачи с динамической локальной адаптацией расчетной сетки. При этом расчетная сетка меняется, что приводит к нарушению условия дивергентности скорости на ней. Поскольку дивергентные скорости используются не только для уравнений Навье – Стокса, но и для всех остальных уравнений математической модели движения жидкости — моделей турбулентности, массопереноса и сохранения энергии, нарушение этого условия ведет к численным ошибкам и, зачастую, к расхождению вычислительного алгоритма.
В статье представлен неявный метод расщепления по физическим переменным, который использует дивергентные скорости с данного шага по времени для решения несжимаемых уравнений Навье – Стокса. Метод разработан для расчета течений при наличии подвижных и контактных границ, моделируемых в постановке Эйлера. Метод позволяет проводить расчеты с шагом интегрирования, на порядки превышающем явный шаг по времени (число Куранта – Фридрихcа – Леви $CFL\gg1$). В данной статье представлен вариант метода для несжимаемых течений. Вариант метода, позволяющий рассчитывать движение жидкости и газа при любых числах Маха, будет опубликован в ближайшее время. Метод для полностью сжимаемых течений реализован в программном комплексе FlowVision.
В статье приводятся результаты численного решения классической задачи обтекания кругового цилиндра при малых числах Рейнольдса ($50<Re<140$), при которых ламинарное обтекание цилиндра становиться нестационарным и образуется дорожка Кармана. Показано хорошее совпадение расчетов с экспериментальными данными, опубликованными в классических работах Ван-Дайка и Танеды.
-
О некоторых методах зеркального спуска для задач сильно выпуклого программирования с липшицевыми функциональными ограничениями
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1727-1746Статья посвящена специальному подходу к субградиентным методам для задач сильно выпуклого программирования с несколькими функциональными ограничениями. Точнее говоря, рассматривается задача сильно выпуклой минимизации с несколькими сильно выпуклыми ограничениями-неравенствами и предлагаются оптимизационные методы первого порядка для такого класса задач. Особенность предложенных методов — возможность использования в теоретических оценках качества выдаваемого методом решения параметров сильной выпуклости именно тех функционалов ограничений, для которых нарушается условие продyктивности итерации. Основная задача — предложить для такой постановки субградиентный метод с адаптивными правилами подбора шагов и остановки метода. Ключевая идея предложенной в данной статье методики заключается в объединении двух подходов: схемы с переключениями по продуктивным и непродуктивным шагам и недавно предложенных модификаций зеркального спуска для задач выпуклого программирования, позволяющих игнорировать часть функциональных ограничений на непродуктивных шагах алгоритма. В статье описан субградиентний метод с переключением по продyктивным и непродyктивным шагам для задач сильно выпуклого программирования в случае, когда целевая функция и функциональные ограничения удовлетворяют условию Липшица. Также рассмотрен аналог этой схемы типа зеркального спуска для задач с относительно липшицевыми и относительно сильно выпуклыми целевой функцией и ограничениями. Для предлагаемых методов получены теоретические оценки качества выдаваемого решения, указывающие на оптимальность этих методов с точки зрения нижних оракульных оценок. Кроме того, поскольку во многих задачах операция нахождения точного вектора субградиента достаточно затратна, то для рассматриваемого класса задач исследованы аналоги указанных выше методов с заменой обычного субградиента на $\delta$-субградиент целевого функционала или функциональных ограничений-неравенств. Отмеченный подход может позволить сэкономить вычислительные затраты метода за счет отказа от требования доступности точного значения субградиента в текущей точке. Показано, что оценки качества решения при этом изменяются на величину $O(\delta)$. Также приводятся результаты численных экспериментов, иллюстрирующие преимущество предлагаемых в статье методов в сравнении с некоторыми ранее известными.
-
Субградиентные методы для задач негладкой оптимизации с некоторой релаксацией условия острого минимума
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 473-495Задачи негладкой оптимизации нередко возникают во многих приложениях. Вопросы разработки эффективных вычислительных процедур для негладких задач в пространствах больших размерностей весьма актуальны. В таких случаях разумно применятьмет оды первого порядка (субградиентные методы), однако в достаточно общих ситуациях они приводят к невысоким скоростным гарантиям. Одним из подходов к этой проблеме может являться выделение подкласса негладких задач, допускающих относительно оптимистичные результаты о скорости сходимости в пространствах больших размерностей. К примеру, одним из вариантов дополнительных предположений может послужитьуслови е острого минимума, предложенное в конце 1960-х годов Б. Т. Поляком. В случае доступности информации о минимальном значении функции для липшицевых задач с острым минимумом известен субградиентный метод с шагом Б. Т. Поляка, который гарантирует линейную скорость сходимости по аргументу. Такой подход позволил покрыть ряд важных прикладных задач (например, задача проектирования точки на выпуклый компакт или задача отыскания общей точки системы выпуклых множеств). Однако как условие доступности минимального значения функции, так и само условие острого минимума выглядят довольно ограничительными. В этой связи в настоящей работе предлагается обобщенное условие острого минимума, аналогичное известному понятию неточного оракула. Предложенный подход позволяет расширить класс применимости субградиентных методов с шагом Б. Т. Поляка на ситуации неточной информации о значении минимума, а также неизвестной константы Липшица целевой функции. Более того, использование в теоретической оценке качества выдаваемого методом решения локальных аналогов глобальных характеристик целевой функции позволяет применять результаты такого типа и к более широким классам задач. Показана возможностьпр именения предложенного подхода к сильно выпуклым негладким задачам и выполнено экспериментальное сравнение с известным оптимальным субградиентным методом на таком классе задач. Более того, получены результаты о применимости предложенной методики для некоторых типов задач с релаксациями выпуклости: недавно предложенное понятие слабой $\beta$-квазивыпуклости и обычной квазивыпуклости. Исследовано обобщение описанной методики на ситуацию с предположением о доступности на итерациях $\delta$-субградиента целевой функции вместо обычного субградиента. Для одного из рассмотренных методов найдены условия, при которых на практике можно отказаться от проектирования итеративной последовательности на допустимое множество поставленной задачи.
-
Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.
Ключевые слова: субградиентный метод, адаптивный метод, шаг Поляка, слабо выпуклые функции, острый минимум, неточный субградиент.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





