Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'информационная модель':
Найдено статей: 48
  1. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

  2. В работе рассматривается задача параметрической идентификации дискретных линейных стохастических систем, представленных уравнениями в пространстве состояний, с аддитивными и мультипликативными шумами. Предполагается, что уравнения состояния и измерения дискретной линейной стохастической системы зависят от неизвестного параметра, подлежащего идентификации.

    Представлен новый подход к построению градиентных методов параметрической идентификации в классе дискретных линейных стохастических систем с аддитивными и мультиплика- тивными шумами, основанный на применении модифицированной взвешенной ортогонализации Грама – Шмидта (MWGS) и алгоритмов дискретной фильтрации информационного типа.

    Основными теоретическими результатами данной работы являются: 1) новый критерий идентификации в терминах расширенного информационного LD-фильтра; 2) новый алгоритм вычисления значений производных по параметру неопределенности дискретной линейной стохастической системы в расширенном информационном LD-фильтре на основе прямой процедуры модифицированной взвешенной ортогонализации Грама – Шмидта; 3) новый метод вычисления градиента критерия идентификации на основе предложенного дифференцированного расширенного информационного LD-фильтра.

    Преимуществом предложенного подхода является применение численно устойчивой к ошибкам машинного округления MWGS-ортогонализации, лежащей в основе разработанных методов и алгоритмов. Информационный LD-фильтр сохраняет симметричность и положительную определенность информационных матриц. Разработанные алгоритмы имеют блочно-матричную структуру, удобную для компьютерной реализации.

    Все разработанные алгоритмы реализованы на языке MATLAB. Проведены серии численных экспериментов, результаты которых демонстрируют работоспособность предложенного подхода на примере решения задачи идентификации параметров математической модели сложной механической системы.

    Полученные результаты могут быть использованы для построения методов параметрической идентификации математических моделей, представленных в пространстве состояний дискретными линейными стохастическими системами с аддитивными и мультипликативными шумами.

  3. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

  4. Мы рассматриваем модель спонтанного формирования вычислительной структуры в мозге человека для решения заданного класса задач в процессе выполнения серии однотипных заданий. Модель основана на специальном определении числовой меры сложности алгоритма решения. Эта мера обладает информационным свойством: сложность вычислительной структуры, состоящей из двух независимых структур, равна сумме сложностей этих структур. Тогда вероятность спонтанного возникновения структуры экспоненциально зависит от сложности структуры. Коэффициент при экспоненте требует экспериментального определения для каждого типа задач. Он может зависеть от формы предъявления исходных данных и от процедуры выдачи результата. Этот метод оценки применен к результатам серии экспериментов, в которых определялась стратегия решения человеком серии однотипных задач с растущим числом исходных данных. Эти эксперименты были описаны в ранее изданных работах. Рассматривались две основные стратегии: последовательное выполнение вычислительного алгоритма или использование параллельных вычислений в тех задачах, где это эффективно. Эти стратегии различаются схемами проведения вычислений. Используя оценку сложности схем, можно по эмпирической вероятности одной из стратегий рассчитать вероятность другой. Проведенные вычисления показали хорошее совпадение расчетной и эмпирической вероятности. Это подтверждает гипотезу о спонтанном формировании структур, решающих задачу, в процессе начальной тренировки человека. Работа содержит краткое описание экспериментов, подробные вычислительные схемы и строгое определение меры сложности вычислительных структур и вывод зависимости вероятности формирования структуры от ее сложности.

  5. Клименко А.Б.
    Математическая модель и эвристические методы организации распределенных вычислений в системах интернета вещей
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 851-870

    В настоящее время интенсивное развитие получило направление в рамках теории распределенных вычислений, когда вычислительные задачи решаются распределенно коллективом ресурсно ограниченных устройств. На практике такой сценарий реализуется при обработке данных в системах интернета вещей, когда с целью снижения латентности систем и загруженности сетевой инфраструктуры данные обрабатываются на вычислительных устройствах края сети, в то время как стремительный рост и распространение систем интернета вещей ставят вопрос о необходимости разработки методов снижения ресурсоемкости производимых вычислений. Ресурсная ограниченность вычислительных устройств ставит следующие вопросы распределения вычислительных ресурсов: во-первых, необходимость учета ресурсной стоимости транзита данных между решаемыми на различных устройствах задачах, во-вторых, необходимость учета ресурсной стоимости непосредственно процесса распределения вычислительных ресурсов, что особенно актуально для групп автономных устройств (роботы различных типов, сенсорные сети и др.). Анализ современных публикаций, представленных в открытом доступе, продемонстрировал отсутствие предложенных моделей или методов распределения вычислительных ресурсов, которые бы совместно учитывали перечисленное, что делает создание новой математической модели организации распределенных вычислений в системах интернета вещей и методов ее решения актуальными.

    В данной статье предложены новая математическая модель распределения вычислительных ресурсов и эвристические методы решения получаемой задачи оптимизации, что в комплексе реализует организацию распределенных вычислений в системах интернета вещей. Рассматривается сценарий, когда в группе устройств имеется лидер, который принимает решение о распределении вычислительных ресурсов, в том числе и собственных, для распределенного решения вычислительных задач с наличием информационных обменов. Также предполагается, что отсутствует априорная информация о том, какому устройству назначена роль лидера, и о маршрутах миграции вычислительных задач на устройства.

    Результаты экспериментального исследования продемонстрировали целесообразность использования предложенных моделей и эвристических методов: достигается распределение вычислительных ресурсов со снижением ресурсной стоимости решения вычислительной задачи до 52 % при учете ресурсной стоимости транзита данных, экономия ресурсов до 73 % при дополнении основных критериев оптимизации распределения задач критерием минимизации количества и расстояний миграций подзадач вычислительной задачи (ВЗ), а также снижение ресурсной стоимости решения задачи распределения вычислительных ресурсов до 28 раз со снижением качества полученного распределения до 10 %.

  6. Угольницкий Г.А., Усов А.Б.
    Теоретико-игровая модель согласования интересов при инновационном развитии корпорации
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 673-684

    Исследуются динамические теоретико-игровые модели инновационного развития корпорации. Предлагаемые модели основаны на согласовании частных и общественных интересов агентов. Предполагается, что структура интересов каждого агента включает как частную (личные интересы), так и общественную (интересы компании в целом, в первую очередь отражающие необходимость ее инновационного развития) составляющие. Агенты могут делить персональные ресурсы между этими направлениями. Динамика системы описывается не дифференциальным, а разностным уравнением. При исследовании предложенной модели инновационного развития используются имитация и метод перебора областей допустимых управлений субъектов с некоторым шагом. Основной вклад работы — сравнительный анализ эффективности методов иерархического управления для информационных регламентов Штакельберга/Гермейера при принуждении/побуждении (четыре регламента) с помощью индексов системной согласованности. Предлагаемая модель носит универсальный характер и может быть использована для научно обоснованной поддержки ПИР компаний всех отраслей экономики. Специфика конкретной компании учитывается в ходе идентификации модели (определения конкретных классов ис- пользуемых в модели функций и числовых значений параметров), которая представляет собой отдельную сложную задачу и предполагает анализ системы официальной отчетности компании и применение экспертных оценок ее специалистов. Приняты следующие предположения относительно информационного регламента иерархической игры: все игроки используют программные стратегии; ведущий выбирает и сообщает ведомым экономические управления либо административные управления, которые могут быть только функциями времени (игры Штакельберга) либо зависеть также от управлений ведомых (игры Гермейера); при известных стратегиях ведущего ведомые одновременно и независимо выбирают свои стратегии, что приводит к равновесию Нэша в игре ведомых. За конечное число итераций предложенный алгоритм имитационного моделирования позволяет построить приближенное решение модели или сделать вывод, что равновесия не существует. Достоверность и эффективность предложенного алгоритма следуют из свойств методов сценариев и прямого упорядоченного перебора с постоянным шагом. Получен ряд содержательных выводов относительно сравнительной эффективности методов иерархического управления инновациями.

    Просмотров за год: 9. Цитирований: 6 (РИНЦ).
  7. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

  8. В данной статье исследуется эффективность применения технологии Retrieval-Augmented Generation (RAG) в сочетании с различными большими языковыми моделями (LLM) для поиска документов и получения информации в корпоративных информационных системах. Рассматриваются варианты использования LLM в корпоративных системах, архитектура RAG, характерные проблемы интеграции LLM в RAG-систему. Предлагается архитектура системы, включающая в себя векторный энкодер текстов и LLM. Энкодер используется для создания векторной базы данных, индексирующей библиотеку корпоративных документов. Запрос, передаваемый LLM, дополняется релевантным ему контекстом из библиотеки корпоративных документов, извлекаемым с использованием векторной базы данных и библиотеки FAISS. Большая языковая модель принимает запрос пользователя и формирует ответ на основе переданных в контексте запроса данных. Рассматриваются общая структура и алгоритм функционирования предлагаемого решения, реализующего архитектуру RAG. Обосновывается выбор LLM для исследования и проводится анализ результативности использования популярных LLM (ChatGPT, GigaChat, YandexGPT, Llama, Mistral, Qwen и др.) в качестве компонента для генерации ответов. На основе тестового набора вопросов методом экспертных оценок оцениваются точность, полнота, грамотность и лаконичность ответов, предоставляемых рассматриваемыми моделями. Анализируются характеристики отдельных моделей, полученные в результате исследования. Приводится информация о средней скорости отклика моделей. Отмечается существенное влияние объема доступной памяти графического адаптера на производительность локальных LLM. На основе интегрального показателя качества формируется общий рейтинг LLM. Полученные результаты подтверждают эффективность предложенной архитектуры RAG для поиска документов и получения информации в корпоративных информационных системах. Были определены возможные направления дальнейших исследований в этой области: дополнение контекста, передаваемого LLM, и переход к архитектуре на базе LLM-агентов. В заключении представлены рекомендации по выбору оптимальной конфигурации RAG и LLM для построения решений, обеспечивающих быстрый и точный доступ к информации в рамках корпоративных информационных систем.

  9. Кутовский Н.А., Нечаевский А.В., Ососков Г.А., Пряхина Д.И., Трофимов В.В.
    Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963

    В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.

    Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  10. Шумов В.В.
    Учет психологических факторов в моделях боя (конфликта)
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 951-964

    Ход и исход боя в значительной степени зависят от морального духа войск, характеризуемого процентом потерь (убитых и раненых), при котором войска еще продолжают сражаться. Всякий бой есть психологический акт, заканчивающийся отказом от него одной из сторон. Обычно в моделях боя психологический фактор учитывают в решении уравнений Ланчестера (условие равенства сил, когда численность одной из сторон обращается в ноль). При этом подчеркивается, что модели ланчестеровского типа удовлетворительно описывают динамику боя только на начальных его стадиях. Для разрешения данного противоречия предложено использовать модификацию уравнений Ланчестера, учитывающую тот факт, что в любой момент боя по противнику ведут огонь не пораженные и не отказавшиеся от сражения бойцы. Полученные дифференциальные уравнения решаются численным методом и позволяют в динамике учитывать влияние психологического фактора и оценивать время завершения конфликта. Вычислительные эксперименты подтверждают известный из военной теории факт, что бой обычно заканчивается отказом бойцов одной из сторон от его продолжения (уклонение от боя в различных формах). Наряду с моделями временно́й и пространственной динамики предложено ис- пользовать модификацию функции технологии конфликта С. Скапердаса, основанную на учете принципов боя. Для оценки вероятности победы одной из сторон в бою учитываются проценты выдерживаемых сторонами кровавых потерь и показатель боевого превосходства. Последний является средним геометрическим параметров, характеризующих всестороннее обеспечение боя, разведку, маневр и огонь. Анализ хода и исхода ряда военных компаний последних десятилетий показал, что процент выдерживаемых военных потерь резко снизился в странах с низким уровнем рождаемости. Наличие технологического превосходства над противником не гарантирует военного успеха, особенно в случае продолжительного конфликта. В этой связи представляются актуальными дальнейшие исследования, позволяющие количественно учесть вклад психологического фактора в ход и исход боя, а также учитывать влияние социально-психологических воздействий.

    Просмотров за год: 7. Цитирований: 4 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.