Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'идентификация математической модели':
Найдено статей: 31
  1. Морозов А.Ю., Ревизников Д.Л.
    Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314

    Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.

  2. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

  3. Назаров В.Г., Прохоров И.В., Яровенко И.П.
    Идентификация неоднородного вещества методами импульсной мультиэнергетической томографии
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 621-639

    В статье рассматриваются математические аспекты проблемы идентификации многокомпонентной рассеивающей среды по данным импульсного мультиэнергетического рентгеновского облучения. Задачи рентгеновской диагностики представляют значительный интерес как с теоретической, так и с практической точки зрения, а радиографические методыне заменимы при неразрушающем контроле изделий.

    В рамках математической модели на основе нестационарного интегро-дифференциального уравнения переноса излучения сформулированы обратная задача нахождения коэффициента ослабления по излучению, известному на границе области, и задача идентификации вещества по найденным значениям коэффициента ослабления на дискретном наборе энергий облучения среды. Проведена предварительная обработка широкого списка веществ, представляющих интерес в компьютерной томографии, на предмет возможности их идентификации по приближенно заданному коэффициенту ослабления излучения, характеризующему среду. При анализе степени близости веществ в некоторой норме установлено, что множество всех возможных веществ, потенциально содержащихся в среде, распадается на конечное число непересекающихся кластеров. При достаточно малой длительности зондирующего сигнала рассеивающая составляющая выходящего из среды излучения асимптотически мала. Это обстоятельство позволяет свести обратную задачу для уравнения переноса излучения к задаче обращения преобразования Радона от коэффициента ослабления. Методами численного моделирования на специально разработанном цифровом фантоме анализируется возможность однозначной или частичной идентификации вещества при варьировании длительности зондирующего импульса и числа энергетических уровней облучения среды.

  4. Королев С.А., Майков Д.В.
    Решение задачи оптимального управления процессом метаногенеза на основе принципа максимума Понтрягина
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 357-367

    В работе представлена математическая модель, описывающая процесс получения биогаза из отходов животноводства. Данная модель описывает процессы, протекающие в биогазовой установке для мезофильной и термофильной сред, а также для непрерывного и периодического режимов поступления субстрата. Приведены найденные ранее для периодического режима значения коэффициентов этой модели, полученные путем решения задачи идентификации модели по экспериментальным данным с использованием генетического алгоритма.

    Для модели метаногенеза сформулирована задача оптимального управления в форме задачи Лагранжа, критериальный функционал которой представляет собой выход биогаза за определенный промежуток времени. Управляющим параметром задачи служит скорость поступления субстрата в биогазовую установку. Предложен алгоритм решения данной задачи, основанный на численной реализации принципа максимума Понтрягина. При этом в качестве метода оптимизации применялся гибридный генетический алгоритм с дополнительным поиском в окрестности лучшего решения методом сопряженных градиентов. Данный численный метод решения задачи оптимального управления является универсальным и применим к широкому классу математических моделей.

    В ходе исследования проанализированы различные режимы подачи субстрата в метантенк, температурные среды и виды сырья. Показано, что скорость образования биогаза при непрерывном режиме подачи сырья в 1.4–1.9 раза выше в мезофильной среде (в 1.9–3.2 — в термофильной среде), чем при периодическом режиме за период полной ферментации, что связано с большей скоростью подачи субстрата и большей концентрацией питательных веществ в субстрате. Однако выход биогаза за период полной ферментации при периодическом режиме вдвое выше выхода за период полной смены субстрата в метантенке при непрерывном режиме, что означает неполную переработку субстрата во втором случае. Скорость образования биогаза для термофильной среды при непрерывном режиме и оптимальной скорости подачи сырья втрое выше, чем для мезофильной среды. Сравнение выхода биогаза для различных типов сырья показывает, что наибольший выход биогаза наблюдается для отходов птицефабрик, наименьший — для отходов ферм КРС, что связано с содержанием питательных веществ в единице субстрата каждого вида.

  5. Суворов Н.В., Шлеймович М.П.
    Математическая модель биометрической системы распознавания по радужной оболочке глаза
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639

    Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.

  6. Чернов И.А.
    Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183

    Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.

  7. Королев С.А., Майков Д.В.
    Идентификация математической модели и исследование различных режимов метаногенеза в мезофильной среде
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 131-141

    Предложена математическая модель процесса получения биогаза из отходов животноводства. Разработан алгоритм идентификации параметров модели. Проведена оценка точности идентификации модели. Приведены результаты моделирования для периодического и непрерывного режимов подачи субстрата. Найдена оптимальная скорость подачи субстрата для непрерывного режима.

    Просмотров за год: 10. Цитирований: 10 (РИНЦ).
  8. При определении лечебных поглощенных доз в процессе радиойодтерапии в отечественной медицине все чаще используется метод индивидуального дозиметрического планирования (ИДП). Однако для успешной реализации данного метода необходимо наличие соответствующего программного обеспечения, позволяющего произвести моделирование фармакокинетики радиойода в организме пациента и рассчитать необходимую терапевтическую активность радиофармацевтического лекарственного препарата (РФЛП) для достижения в щитовидной железе запланированной лечебной поглощенной дозы.

    Цель работы — разработка программного комплекса фармакокинетического моделирования и расчета индивидуальных поглощенных доз при радиойодтерапии на основе пятикамерной модели кинетики радиойода с применением двух математических методов оптимизации. Работа основана на принципах и методах фармакокинетики РФЛП (камерное моделирование). Для нахождения минимума функционала невязки при идентификации значений транспортных констант модели были использованы метод Хука – Дживса и метод имитации отжига. Расчет дозиметрических характеристик и вводимой терапевтической активности основан на методике расчета поглощенных доз через найденные в процессе моделирования функции активностей радиойода в камерах. Для идентификации параметров модели использованы результаты радиометрии щитовидной железы и мочи пациентов с введенным в организм радиойодом.

    Разработан программный комплекс моделирования кинетики радиойода при его пероральном поступлении в организм. Для пациентов с диффузным токсическим зобом идентифицированы транспортные константы модели и рассчитаны индивидуальные фармакокинетические и дозиметрические характеристики (периоды полувыведения, максимальная активность в щитовидной железе и время ее достижения, поглощенные дозы на критические органы и ткани, вводимая терапевтическая активность). Получены и проанализированы зависимости «активность – время» для всех камер модели. Проведен сравнительный анализ фармакокинетических и дозиметрических характеристик, рассчитанных в рамках двух математических методов оптимизации. Осуществлена оценка stunning-эффекта и его вклад в погрешности расчета поглощенных доз. Из сравнительного анализа рассчитанных в рамках двух методов оптимизации фармакокинетических и дозиметрических характеристик следует, что использование более сложного математического метода имитации отжига в программном комплексе не приводит к существенным изменениям в значениях характеристик по сравнению с простым методом Хука – Дживса. Погрешности расчета поглощенных доз в рамках этих математических методов оптимизации не превышают вариации значений поглощенных доз от stunning-эффекта.

  9. Четырбоцкий В.А., Четырбоцкий А.Н.
    Задачи численного моделирования динамики системы «почва–растение»
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 445-465

    Рассмотрены современные математические модели динамики системы «почва–растение», составляющими которых выступают: растение сельскохозяйственного назначения, микроорганизмы ризосферы (прикорневой зоны растений), элементы минерального питания растений их подвижной и неподвижной форм. На основании анализа принятых положений разработана модель, в которой учитываются взаимосвязи и определенный согласованный характер совместных изменений ее составляющих. В частности, динамика содержащихся в растениях элементов их минерального питания и динамика биомассы растений определяются текущим содержанием в ризосфере внесенных сюда удобрений и отмершими продуктами жизнедеятельности ризосферных элементов (отмершие корни растений, опавшие листья (опад) и т. д.). Полагаются пространственная неподвижность растений и пространственная подвижность микро- организмов, механизм которой определяется здесь диффузией. Предлагаются формальные соотношения влияния суммарного воздействия на динамику растений сорняков (они характеризуют отдельный вид растений) и вредителей (они характеризуют отдельный вид микроорганизмов), где учитываются взаимные переходы элементов минерального питания из подвижной их формы в неподвижную. Для системы, где каждая из составляющих представлена только одним видом (удобрение, ассоциация микроорганизмов и растения представлены только одним видом), выполнено аналитическое исследование. Для однолетних культур сельскохозяйственного назначения разработана адаптация модели распространения волны в системе «ресурс–потребитель» (волны Колмогорова–Петровского–Пискунова). Реализация модели выполнена на примере динамики роста яровой пшеницы Красноуфимская-100 на торфяной низинной почве, куда предварительно были внесены фосфорные и калийные удобрения. Цифровой материал представлен массивом экспериментальных распределений биомассы растений и элементов минерального питания. Специфика экспериментального материала обусловила переход к модели, которая является редукцией сформулированной общей модели. Ее составляющими выступают распределение биомассы растений и содержание в них элементов минерального питания. Оценка адекватности модельных и экспериментальных распределений показала хорошую степень их соответствия.

  10. Матвеев А.В.
    Моделирование кинетики радиофармпрепаратов с изотопами йода в задачах ядерной медицины
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 883-905

    Радиофармацевтические препараты, меченные радиоизотопами йода, в настоящее время широко применяются в визуализирующих и невизуализирующих методах ядерной медицины. При оценке результатов радионуклидных исследований структурно-функционального состояния органов и тканей существенную роль приобретает параллельное моделирование кинетики радиофармпрепарата в организме. Сложность такого моделирования заключается в двух противоположных аспектах. С одной стороны, в чрезмерном упрощении анатомо-физиологических особенностей организма при разбиении его на компартменты, что может приводить к потере или искажению значимой для клинической диагностики информации, с другой — в излишнем учете всех возможных взаимосвязей функционирования органов и систем, что, наоборот, приведет к появлению избыточного количества абсолютно бесполезных для клинической интерпретации математических данных, либо модель становится вообще неразрешимой. В нашей работе вырабатывается единый подход к построению математических моделей кинетики радиофармпрепаратов с изотопами йода в организме человека при диагностических и терапевтических процедурах ядерной медицины. На основе данного подхода разработаны трех- и четырехкамерные фармакокинетические модели и созданы соответствующие им расчетные программы на языке программирования C++ для обработки и оценки результатов радионуклидной диагностики и терапии. Предложены различные способы идентификации модельных параметров на основе количественных данных радионуклидных исследований функционального состояния жизненно важных органов. Приведены и проанализированы результаты фармакокинетического моделирования при радионуклидной диагностике печени, почек и щитовидной железы с помощью йодсодержащих радиофармпрепаратов. С использованием клинико-диагностических данных определены индивидуальные фармакокинетические параметры транспорта разных радиофармпрепаратов в организме (транспортные константы, периоды полувыведения, максимальная активность в органе и время ее достижения). Показано, что фармакокинетические характеристики для каждого пациента являются сугубо индивидуальными и не могут быть описаны усредненными кинетическими параметрами. В рамках трех фармакокинетических моделей получены и проанализированы зависимости «активность – время» для разных органов и тканей, в том числе для тканей, в которых активность радиофармпрепарата невозможно или затруднительно измерить клиническими методами. Также обсуждаются особенности и результаты моделирования и дозиметрического планирования радиойодтерапии щитовидной железы. Показано, что значения поглощенных радиационных доз очень чувствительны к кинетическим параметрам камерной модели — транспортным константам. Поэтому при индивидуальном дозиметрическом планировании радиойодтерапии следует уделять особое внимание получению точных количественных данных ультразвукового исследования и радиометрии щитовидной железы и на их основе идентификации параметров моделирования. Работа основана на принципах и методах фармакокинетики. Для численного решения систем дифференциальных уравнений фармакокинетических моделей мы использовали методы Рунге–Кутты и метод Розенброка. Для нахождения минимума функции нескольких переменных при идентификации параметров моделирования использовался метод Хука–Дживса.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.