Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Анализ межатомных потенциалов для моделирования вакансионной диффузии в концентрированных сплавах Fe–Cr
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 87-101Просмотров за год: 14.В данном исследовании проверялась корректность работы трех межатомных потенциалов взаимодействия, доступных в научной литературе, в молекулярно-динамическом моделировании вакансионной диффузии в концентрированных сплавах Fe–Cr. Проведенная работа была необходима для дальнейшего детального исследования механизма вакансионной диффузии в данных сплавах с содержанием хрома 5–25 ат.% в температурном диапазоне 600–1000 К. Анализ был выполнен на моделях сплава с содержанием хрома 10, 20, 50 ат.%. Рассмотрение модели сплава с 50 ат.% хрома было необходимо для дальнейшего исследования диффузионных процессов в обогащенных хромом преципитатах данных сплавов. Для всех потенциалов были рассчитаны и проанализированы энергии формирования вакансии в сплавах и диффузионные подвижности атомов железа и хрома через искусственно созданную одиночную вакансию. В качестве основной характеристики для анализа подвижностей атомов была выбрана временная зависимость их среднеквадратичного смещения. Моделирование энергий формирования вакансий не выявило качественных различий между исследуемыми моделями потенциалов. Проведенное исследование атомных подвижностей показало плохое воспроизведение диффузии вакансии в исследуемых сплавах концентрационно-зависимой моделью (CDM), которая сильно занижала подвижность атомов хрома через вакансию во всем исследуемом диапазоне температур и концентраций хрома. Установлено, что двусвязная модель потенциала (2BM) в своей оригинальной и модифицированной версии подобных недостатков не имеет. Это позволяет использовать эти потенциалы в моделированиях вакансионного механизма диффузии в исследуемых сплавах. Для обоих 2BM-потенциалов была зафиксирована существенная зависимость соотношения подвижностей хрома и железа от температуры и содержания хрома в сплавах. Количественные данные коэффициентов диффузии атомов, полученные этими потенциалами, также существенно различаются.
-
Численное моделирование динамики распределения плотности клеточной ткани с учетом влияния хемотаксиса и деформации внеклеточного матрикса
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1433-1445В настоящей работе рассматривается математическая модель динамики клеточной ткани. В первой части дается вывод модели, основные положения и постановка задачи. Во второй части итоговая система исследуется численно и приводятся результаты моделирования. Постулируется, что клеточная ткань есть трехфазная среда, которая состоит из твердого скелета (представляющего собой внеклеточный матрикс), клеток и внеклеточной жидкости. Ко всему прочему учитывается наличие питательных веществ в ткани. В основу модели положены уравнения сохранения массы с учетом обмена масс, уравнения сохранения импульса для каждой фазы, а также уравнение диффузии для питательных веществ. В уравнении, описывающем клеточную фазу, также учитывается слагаемое, описывающее химическое воздействие на ткань, которое называется хемотаксисом — движением клеток, вызванным градиентом концентрации химических веществ. Исходная система уравнений сводится к системе трех уравнений для нахождения пористости, насыщенности клеток и концентрации питательных веществ. Данные уравнения дополняются начальными и краевыми условиями. В одномерном случае в начальный момент времени задается распределение пористости, концентрации клеточной фазы и питательных веществ. На левой границе задана постоянная концентрация питательных веществ, что соответствует, например, поступлению кислорода из сосуда, а также поток концентрации клеток на ней равен нулю. На правой границе рассматриваются два типа условий: первое — условие непроницаемости правой границы, второе — условие постоянной концентрации клеточной фазы и нулевой поток концентрации питательных веществ. В обоих случаях условия для матрикса и внеклеточной жидкости одинаковы, предполагается наличие источника питательных веществ (кровеносного сосуда) на левой границе области моделирования. В результате моделирования было выявлено, что хемотаксис оказывает значительное влияние на рост ткани. При отсутствии хемотаксиса зона уплотнения распространяется на всю область моделирования, но при увеличении влияния хемотаксиса на ткань образуется область деградации, в которой концентрация клеток становится ниже начальной.
Ключевые слова: математическое моделирование, биологическая ткань, обмен масс, фильтрация, пористость. -
Оптимальность для каждого индивидуума не гарантирует оптимальности всего сообщества: почему медоносные пчелы не анализируют танцы?
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 261-275Мы разработали модель кормодобывания колонии медоносных пчел на основе уравнений «реакция – диффузия». Работающие пчелы передают информацию о своих источниках пищи с помощью танца, а соискатели работы в улье могут выбрать любой понравившийся им танец и, таким образом, присоединиться к эксплуатации соответствующего источника. Мы рассматриваем две стратегии выбора танцев: целенаправленную, когда пчелы анализируют информацию на танцполе и выбирают самый энергичный и длительный танец, отвечающий самому прибыльному источнику, и просто случайный выбор первого попавшегося танца. Моделирование показало, что наибольшую прибыль (приток пищи в улей) обеспечивает именно случайный выбор танца, как бы это парадоксально на первый взгляд ни звучало. Оптимизация прибыли каждым агентом под себя (целенаправленный выбор танцев) является скорее недостатком для колонии, а «неоптимальность» в выборе танца может быть результатом полезной эволюционной адаптации.
-
Молекулярное моделирование липидных бислойных мембран
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 423-436Просмотров за год: 20. Цитирований: 2 (РИНЦ).Построена полноатомная модель молекулы липида (дистеароилфосфатидилхолина, ДСФХ) и фрагмента липидной мембраны, необходимая для описания свойств липидных мембран в рамках метода молекулярной динамики. Построенная модель устойчива во времени, обладает термодинамически адекватным распределением энергии по степеням свободы системы и имеет параметры, хорошо согласующиеся с параметрами реального ДСФХ. С использованием построенной модели проведены расчеты проницаемости липидного бислоя для ионов натрия, воды и кислорода. Получены профили подвижности и коэффициентов диффузии этих частиц при их движении сквозь бислой, на основании которых оценены соответствующие коэффициенты проницаемости модельной мембраны. Показано, что липидные мембраны обладают значительным диффузионным сопротивлением не только для молекулы воды и иона натрия, но и для неполярной молекулы кислорода. Предложены теоретические методы расчета потоков исследуемых частиц через липидный бислой, а также методы оценки коэффициентов распределения малых молекул в системах липидный бислой - вода.
-
Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.
Ключевые слова: диффузия, уравнение Ланжевена, стохастические дифференциальные уравнения, корреляция, порядок сходимости.Просмотров за год: 5. Цитирований: 4 (РИНЦ). -
Математические модели роста тромба на основе уравнений типа «адвекция–диффузия» и Фоккера–Планка
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 271-283В работе рассмотрены модели формирования тромбоцитарного тромба в потоке плазмы крови в цилиндрическом сосуде, основанные на уравнении типа «адвекция–диффузия» и уравнении Фоккера–Планка. Приведено сравнение результатов расчетов на основе этих моделей. Рассмотренные модели демонстрируют качественно схожее поведение на начальном этапе формирования тромба. При детальном исследовании возникновения крупных сгустков необходимо уточнение моделей.
Ключевые слова: сдвиговая диффузия, тромбоциты, тромб, вязкая жидкость, уравнение Фоккера–Планка, «адвекция–диффузия».Просмотров за год: 2. -
Стохастическое моделирование химических реакций в субдиффузионной среде
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.
Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.
Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.
-
Методика анализа шумоиндуцированных явлений в двухкомпонентных стохастических системах реакционно-диффузионного типа со степенной нелинейностью
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 277-291В работе построена и исследуется обобщенная модель, описывающая двухкомпонентные системы реакционно-диффузионного типа со степенной нелинейностью и учитывающая влияние внешних шумов. Для анализа обобщенной модели разработана методология, включающая в себя линейный анализ устойчивости, нелинейный анализ устойчивости и численное моделирование эволюции системы. Методика проведения линейного анализа опирается на базовые подходы, в которых для получения характеристического уравнения используется матрица линеаризации. Нелинейный анализ устойчивости проводится с точностью до моментов третьего порядка включительно. Для этого функции, описывающие динамику компонент, раскладываются в ряд Тейлора до слагаемых третьего порядка. Затем с помощью теоремы Новикова проводится процедура усреднения. В результате полученные уравнения образуют бесконечную иерархично подчиненную структуру, которую в определенный момент необходимо прервать. Для этого пренебрегаем вкладом слагаемых выше третьего порядка как в самих уравнениях, так и при построении уравнений моментов. Полученные уравнения образуют набор линейных уравнений, из которых формируется матрица устойчивости. Эта матрица имеет довольно сложную структуру, в связи с чем ее решение может быть получено только численно. Для проведения численного исследования эволюции системы выбран метод переменных направлений. Из-за наличия в анализируемой системе стохастической части метод был модифицирован таким образом, что на целых слоях проводится генерация случайных полей с заданным распределением и функцией корреляции, отвечающих за шумовой вклад в общую нелинейность. Апробация разработанной методологии проведена на предложенной Barrio et al. модели реакции – диффузии, по результатам исследования которой им показана схожесть получаемых структур с пигментацией рыб. В настоящей работе внимание сосредоточено на анализе поведения системы в окрестности ненулевой стационарной точки. Изучена зависимость действительной части собственных значений от волнового числа. В линейном анализе получена область значений волновых чисел, при которых возникает неустойчивость Тьюринга. Нелинейный анализ и численное моделирование эволюции системы проводятся для параметров модели, которые, напротив, находятся вне области неустойчивости Тьюринга. В рамках нелинейного анализа найдены интенсивности аддитивного шума, при которых, несмотря на отсутствие условий для возникновения диффузионной неустойчивости, система переходит в неустойчивое состояние. Результаты численного моделирования эволюции апробируемой модели демонстрируют процесс образования пространственных структур тьюрингового типа при воздействии на нее аддитивного шума.
-
Анализ динамических режимов взаимодействующих синтетических генетических репрессиляторов
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 403-418Просмотров за год: 2. Цитирований: 2 (РИНЦ).В работе изучена динамика двух искусственных генетических осцилляторов — репрессиляторов, — связанных диффузией аутоиндуктора. Выбрана модель генетической сети, в которой производство, диффузия и ген-мишень для аутоиндуктора обеспечивают расталкивающее взаимодействие между фазовыми точками. Исследовано появление периодических режимов, устойчивых неоднородных стационарных состояний в зависимости от главных бифуркационных параметров: силы связи и скорости синтеза мРНК. Показано, что добавление в генетическую схему аутоиндуктора приводит к исчезновению предельного цикла через бифуркацию бесконечного периода в изолированном осцилляторе, если скорость синтеза мРНК велика. Найден гистерезис между предельным циклом и стационарным состоянием, размер которого зависит от соотношения времен жизни мРНК и белков. Взаимодействие двух осцилляторов приводит к появлению устойчивого противофазного предельного цикла, который может переходить в хаотический режим через «тор-хаос» или путем каскада Фейгенбаума.
-
Математическое моделирование распространения тромбина в процессе свертывания крови
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 469-486В случае повреждения сосуда или контакта плазмы крови с чужеродной поверхностью запускается цепь химических реакций (каскад свертывания), ведущая к формированию кровяного сгустка (тромба), основу которого составляют волокна фибрина. Ключевым компонентом каскада свертывания крови является фермент тромбин, катализирующий образование фибрина из фибриногена. Распределение концентрации тромбина определяет пространственно-временную динамику формирования кровяного сгустка. Контактный путь активации системы свертывания запускает реакцию образования тромбина в ответ на контакт с отрицательно заряженной поверхностью. Если концентрация тромбина, произведенного на этом этапе, достаточно велика, дальнейшее образование тромбина идет за счет положительных обратных связей каскада свертывания. В результате тромбин распространяется в плазме, что приводит к расщеплению фибриногена и формированию тромба. Профиль концентрации и скорость распространения тромбина в плазме постоянны и не зависят от того, как было активировано свертывание.
Подобное поведение системы свертывания хорошо описывается решениями типа бегущей волны в системе уравнений «реакция – диффузия» на концентрации факторов крови, принимающих участие в каскаде свертывания. В настоящей работе проводится подробный анализма тематической модели, описывающей основные реакции каскада свертывания. Формулируются необходимые и достаточные условия существования решений системы типа бегущей волны. Для рассмотренной модели существование таких решений является эквивалентным существованию волновых решений упрощенной модели, полученной с помощью квазистационарного приближения и состоящей из одного уравнения, описывающего динамику концентрации тромбина.
Упрощенная модель также позволяет нам получить аналитические оценки скорости распространения волны тромбина в рассматриваемых моделях. Скорость бегущей волны для одного уравнения была оценена с использованием метода узкой зоны реакции и с помощью кусочно-линейного приближения. Полученные формулы дают хорошее приближение скорости распространения волны тромбина как в упрощенной, так и в исходной модели.
Ключевые слова: бегущие волны, свертывание крови.Просмотров за год: 10. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"