Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'дифференциальные уравнения':
Найдено статей: 146
  1. В работе изучается многомерное уравнение конвекции-диффузии с переменными коэффициентами и неклассическим граничным условием. Рассмотрены два случая: в первом случае первое граничное условие содержит интеграл от неизвестной функции по переменной интегрирования $x_\alpha^{}$, а во втором случае — интеграл от неизвестной функции по переменной интегрирования $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении переноса примеси вдоль русла рек. Для приближенного решения поставленной задачи предложена эффективная в плане экономичности, устойчивости и сходимости разностная схема — локально-одномерная разностная схема А.А. Самарского с порядком аппроксимации~$O(h^2+\tau)$. Ввиду того что уравнение содержит первую производную от неизвестной функции по пространственной переменной $x_\alpha^{}$, для повышения порядка точности локально-одномерной схемы используется известный метод, предложенный А.А. Самарским при построении монотонной схемы второго порядка точности по $h_\alpha^{}$ для уравнения параболического типа общего вида, содержащего односторонние производные, учитывающие знак $r_\alpha^{}(x,\,t)$. Для повышения до второго порядка точности по $h_\alpha^{}$ краевых условий третьего рода воспользовались уравнением в предположении, что оно справедливо и на границах. Исследование единственности и устойчивости решения проводилось с помощью метода энергетических неравенств. Получены априорные оценки решения разностной задачи в $L_2^{}$-норме, откуда следуют единственность решения, непрерывная и равномерная зависимость решения разностной задачи от входных данных, а также сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи в $L_2^{}$-норме со скоростью, равной порядку аппроксимации разностной схемы. Для двумерной задачи построен алгоритм численного решения, проведены численные расчеты тестовых примеров, иллюстрирующие полученные в работе теоретические результаты.

  2. Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами, в которой в явном виде выделяются члены, линейно зависящие от координат, скоростей и ускорений; нелинейные члены записываются в виде неявных функций от этих переменных. Для численного решения начальной задачи, описываемой такой системой дифференциальных уравнений, используется одношаговый метод Галёркина. На шаге интегрирования неизвестные функции представляются в виде суммы линейных функций, удовлетворяющих начальным условиям, и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближенно по методу Галёркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые на каждом шаге решаются методом итераций. Из решения в конце каждого шага определяются начальные условия на следующем шаге.

    Корректирующие функции берутся одинаковыми для всех шагов. В общем случае для расчетов на больших интервалах времени используются 4 или 5 корректирующих функций: в первом наборе — базовые степенные функции от 2-й до 4-й или 5-й степеней; во втором наборе — образованные из базовых функций ортогональные степенные полиномы; в третьем наборе — образованные из базовых функций специальные линейно независимые многочлены с конечными условиями, упрощающими «стыковку» решений на следующих шагах.

    На двух примерах расчета нелинейных колебаний систем с одной и с двумя степенями свободы выполнены численные исследования точности численного решения начальных задач на различных интервалах времени по методу Галёркина с использованием указанных наборов степенных корректирующих функций. Выполнены сравнения результатов, полученных по методу Галёркина и по методам Адамса и Рунге – Кутты четвертого порядка. Показано, что методом Галёркина можно получить достоверные результатына значительно больших интервалах времени, чем по методам Адамса и Рунге – Кутты.

  3. Морозов А.Ю., Ревизников Д.Л.
    Параметрическая идентификация динамических систем на основе внешних интервальных оценок фазовых переменных
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 299-314

    Важную роль при построении математических моделей динамических систем играют обратные задачи, к которым, в частности, относится задача параметрической идентификации. В отличие от классических моделей, оперирующих точечными значениями, интервальные модели дают ограничения сверху и снизу на исследуемые величины. В работе рассматривается интерполяционный подход к решению интервальных задач параметрической идентификации динамических систем для случая, когда экспериментальные данные представлены внешними интервальными оценками. Цель предлагаемого подхода заключается в нахождении такой интервальной оценки параметров модели, при которой внешняя интервальная оценка решения прямой задачи моделирования содержала бы экспериментальные данные или минимизировала бы отклонение от них. В основе подхода лежит алгоритм адаптивной интерполяции для моделирования динамических систем с интервальными неопределенностями, позволяющий в явном виде получать зависимость фазовых переменных от параметров системы. Сформулирована задача минимизации расстояния между экспериментальными данными и модельным решением в пространстве границ интервальных оценок параметров модели. Получено выражение для градиента целевой функции. На репрезентативном наборе задач продемонстрированы эффективность и работоспособность предлагаемого подхода.

  4. Силаев Д.А., Коротаев Д.О.
    Решение краевых задач с помощью S-сплайна
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 161-171

    Данная работа посвящена применению теории S-сплайнов для решения уравнений в частных производных на примере уравнения Пуассона. S-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. В зависимости от порядка рассматриваемых полиномов и соотношения между количеством условий первого и второго типов мы получаем S-сплайны с разными свойствами. На настоящий момент изучены сплайны 3-й степени класса C1 и сплайны 5-й степени класса C2(т.е. на них накладывались условия гладкой склейки вплоть до первой и второй производных соответственно). Мы рассмотрим, каким образом могут быть применены сплайны 3-й степени класса C1 при решении уравнения Пуассона на круге и в других областях.

    Просмотров за год: 8. Цитирований: 8 (РИНЦ).
  5. Вражнов Д.А., Шаповалов А.В., Николаев В.В.
    Симметрии дифференциальных уравнений в задачах компьютерного зрения
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 369-376

    В данной работе приводится обобщение подхода к построению инвариантных векторов признаков изображений в задачах распознавания образов. Базовым элементом предлагаемого алгоритма является замена обычно применяемого гауссова фильтра исходного изображения сверткой функции изображения с функцией Грина эволюционного оператора, наследующей свойства симметрий этого оператора. Применение обобщенной фильтрации позволяет выделять дополнительные характеристики инвариантных векторов признаков.

    Просмотров за год: 8. Цитирований: 4 (РИНЦ).
  6. Кривовичев Г.В.
    О расчете течений вязкой жидкости методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 165-178

    Предложен модифицированный метод решеточных уравнений Больцмана для расчета течений вязкой ньютоновской жидкости. Модифицированный метод основан на использовании расщепления дифференциального оператора в уравнении Навье–Стокса и идее мгновенной максвеллизации функции распределения. При переходе от одного временного слоя к другому последовательно численно решаются задачи для системы решеточных кинетических уравнений и системы линейных уравнений диффузии. Эффективность предложенного метода по сравнению с обычным методом решеточных уравнений Больцмана показана при решении задачи о плоском течении в каверне в случае различных значений числа Рейнольдса и при различных разбиениях сетки.

    Цитирований: 8 (РИНЦ).
  7. Карабан В.М., Сухоруков М.П., Морозов Е.А.
    Программная реализация трехмерного моделирования тепловых процессов в многослойных интегральных схемах космического назначения
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 397-403

    В данной работе рассматривается программная реализация трехмерного моделирования тепловых процессов в многослойных интегральных схемах на основе низкотемпературной совместно обжигаемой керамики. Приведены результаты, полученные с помощью реализованного программного обеспечения на примере радиочастотного приемного модуля на основе низкотемпературной керамики для системы автономной навигации. А также приведено сравнение полученных результатов с результатами сертифицированного программного продукта.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  8. Кривовичев Г.В.
    Исследование устойчивости разностных схем метода решеточных уравнений Больцмана для моделирования диффузии
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 485-500

    В работе исследуется устойчивость разностных схем, применяемых в методе решеточных уравнений Больцмана для моделирования диффузии в одномерном случае для решеток D1Q2 и D1Q3. Разностные схемы строятся для системы линейных кинетических уравнений Бхатнагара–Гросса–Крука (БГК) относительно одночастичных функций распределения. Проведен краткий обзор работ других авторов. С использованием мультискейлингового разложения методом Чепмена–Энскога показано, что система уравнений БГК при малых числах Кнудсена сводится к линейному уравнению диффузии. Решение уравнения диффузии находится как сумма функций распределения. С использованием метода бегущих волн показана асимптотическая устойчивость решения задачи Коши для системы кинетических уравнений типа БГК во всем диапазоне времени релаксации. С помощью метода дифференциального приближения показана устойчивость разностной схемы для случая решетки D1Q2. Условие устойчивости получено в виде неравенства на значения времени релаксации. Исследуется возможность сведения анализа устойчивости разностных схем для системы уравнений БГК к анализу схем специального вида для уравнения диффузии в случае решетки D1Q3. Численное исследование устойчивости проводилось с помощью метода фон Неймана. В ходе анализа исследовались величины модулей собственных значений матрицы перехода в пространстве параметров разностной схемы. Показано, что в широком диапазоне изменения параметров модули собственных значений не превосходят единицы, что говорит об устойчивости схемы по начальным условиям.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  9. В статье рассматривается модель антропоморфного механизма типа экзоскелета со звеньями переменной длины. Комплексно рассмотрены четыре модели звеньев переменной длины: модель звена экзоскелета переменной длины с упругим элементом и абсолютно твердым весомым стержнем, модель телескопического звена; модель звена с массами в шарнирах-суставах и между ними, модель звена с произвольным количеством масс. Составлены дифференциальные уравнения движения в форме уравнений Лагранжа второго рода. На основе проведенного анализа дифференциальных уравнений движения для многозвенных стержневых механических систем типа экзосклета выявлена их структура, позволившая представить их в векторно-матричном виде. Впервые установлены общие закономерности построения матриц и получены обобщения выражений для элементов матриц в двухмерном случае. Приводятся новые рекуррентный и матричный методы составления дифференциальных уравнений движения. Предлагается единый подход к построению дифференциальных уравнений движения экзоскелета на основе разработанных рекуррентного и матричного методов записи дифференциальных уравнений движения экзоскелета. Проведено сопоставление времени составления дифференциальных уравнений движения предложенными методами, в сравнении с уравнениями Лагранжа второго рода, в системе компьютерной математики Mathematica. Осуществлено аналитическое исследование модели экзоскелета. Установлено, что для механизмов с $n$ подвижными звеньями решение задачи Коши для систем дифференциальных уравнений движения при любых начальных условиях существует, единственно и неограниченно продолжаемо. Управление экзоскелетом осуществляется с помощью крутящих моментов, расположенных в шарнирах-суставах в местах соединения звеньев и моделирующих управляющие воздействия. Выполнено численное исследование модели экзоскелета, проведено сопоставление результатов расчетов для экзоскелетов с различными моделями звеньев. Для численного исследования использованы эмпирические данные о человеке и его движениях. Установлено, что при выборе конструкции экзоскелета модель с сосредоточенными массами является предпочтительной, нежели модель с абсолютно твердым весомым стержнем, так как экзоскелет, обеспечивающий комфортабельные передвижения человека в нем, должен повторять свойства опорно-двигательного аппарата.

    Просмотров за год: 15. Цитирований: 2 (РИНЦ).
  10. Волохова А.В., Земляная Е.В., Качалов В.В., Сокотущенко В.Н., Рихвицкий В.С.
    Численное исследование фильтрации газоконденсатной смеси в пористой среде
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 209-219

    В последние десятилетия важное значение приобретает разработка методов повышения эффективности извлечения углеводородов в месторождениях с нетрадиционными запасами, содержащими в больших количествах газовый конденсат. Это делает актуальным развитие методов математического моделирования, реалистично описывающих процессы фильтрации газоконденсатной смеси в пористой среде.

    В данной работе рассматривается математическая модель, описывающая динамику изменения давления, скорости и концентрации компонент двухкомпонентной двухфазовой смеси, поступающей в лабораторную модель пласта, заполненную пористым веществом с известными физико-химическими свойствами. Математическая модель описывается системой нелинейных пространственно-одномерных дифференциальных уравнений в частных производных с соответствующими начальными и граничными условиями. Лабораторные эксперименты показывают, что в течение конечного времени система стабилизируется, что дает основание перейти к стационарной постановке задачи.

    Численное решение сформулированной системы обыкновенных дифференциальных уравнений реализовано в среде Maple на основе метода Рунге–Кутты с автоматическим выбором шага. Показано, что полученные на этой основе физические параметры двухкомпонентной газоконденсатной смеси из метана и н-бутана, характеризующие моделируемую систему в режиме стабилизации, хорошо согласуются с имеющимися экспериментальными данными.

    Это подтверждает реалистичность выбранного подхода и обоснованность его дальнейшего развития и применения для компьютерного моделирования неравновесных физических процессов в газоконденсатных смесях в пористой среде с целью выработки в перспективе практических рекомендаций по увеличению извлекаемости углеводородного газоконденсата из природных месторождений. В работе представлена математическая постановка системы нелинейных уравнений в частных производных и соответствующей стационарной задачи, описан метод численного исследования, обсуждаются полученные численные результаты в сравнении с экспериментальными данными.

    Просмотров за год: 18. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.