Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'дисперсия шума':
Найдено статей: 13
  1. Курушина С.Е., Шаповалова Е.А.
    Рождение и развитие беспорядка внутри упорядоченного состояния в пространственно распределенной модели химической реакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 595-607

    В работе изложены основные моменты приближения среднего поля в применении к многокомпонентным стохастическим реакционно-диффузионным системам.

    Представлена изучаемая модель химической реакции — брюсселятор. Записаны кинетические уравнения реакции, учитывающие диффузию промежуточных компонент и флуктуации концентраций исходных веществ. Флуктуации моделируются как случайные гауссовы однородные и изотропные в пространстве поля, с нулевым средним и пространственной корреляционной функцией, имеющей нетривиальную структуру. В работе рассматриваются значения параметров модели, соответствующие пространственно неоднородному упорядоченному состоянию в детерминированном случае.

    В работе получено одноточечное двумерное нелинейное самосогласованное уравнение Фоккера–Планка в интерпретации Стратоновича в приближении среднего поля для пространственно распределенного стохастического брюсселятора, которое описывает динамику плотности распределения вероятностей значений концентраций компонент рассматриваемой системы. Найдены значения интенсивности внешнего шума, соответствующие двум типам решений уравнения Фоккера–Планка: решению с времен- ной бимодальностью и решению с многократным чередованием одно- и бимодального видов плотности вероятностей. Проведено численное исследование динамики плотности распределения вероятностей и изучено поведение во времени дисперсий, математических ожиданий и наиболее вероятных значений концентраций компонент при различных значениях интенсивности шума и бифуркационного параметра в указанных областях параметров задачи.

    Показано, что, начиная с некоторого значения интенсивности внешнего шума, внутри упорядоченной фазы зарождается беспорядок, существующий конечное время, причем чем больше шум, тем больше его время жизни. Чем дальше от точки бифуркации, тем меньше шум, который его порождает, и тем уже область значений интенсивности шума, при которых система эволюционирует к упорядоченному, но уже новому статистически стационарному состоянию. При некотором втором значении интенсивности шума возникает перемежаемость упорядоченной и разупорядоченной фаз. Увеличение интенсивности шума приводит к тому, что частота перемежаемости увеличивается.

    Таким образом, показано, что сценарием шумоиндуцированного перехода «порядок–беспорядок» в изучаемой системе является перемежаемость упорядоченной и разупорядоченной фаз.

    Просмотров за год: 7.
  2. Эффективность систем связи и передачи данных (ССиПД), являющихся неотъемлемой составляющей современных систем практически в любой области науки и техники, во многом зависит от стабильности частоты формируемых сигналов. Формируемые в ССиПД сигналы могут рассматриваться как процессы, частота которых изменяется под действием совокупности внешних воздействий. Изменение частоты сигналов приводит к уменьшению отношения «сигнал/шум» (ОСШ) и, соответственно, ухудшению характеристик ССиПД, таких как вероятность битовой ошибки, пропускная способность. Описание таких изменений частоты сигналов наиболее удобно рассматривать как случайные процессы, аппарат которых находит широкое применение при построении математических моделей, описывающих функционирование систем и устройств в различных областях науки и техники. При этом во многих случаях характеристики случайного процесса, такие как закон распределения, математическое ожидание и дисперсия, могут являться неизвестными или известными с погрешностями, не позволяющими получить приемлемые по точности оценки параметров сигналов. В статье предлагается алгоритм решения задачи по определению характеристик случайного процесса (частоты сигнала) на основе набора отсчетов его частоты, позволяющих определить выборочное среднее, выборочную дисперсию и закон распределения отклонений частоты в генеральной совокупности. Основой данного алгоритма является сравнение измеренных на некотором временном интервале значений наблюдаемого случайного процесса с набором того же количества случайных значений, сформированных на основе модельных законов распределения. В качестве модельных законов распределения могут рассматриваться законы распределения, принятые на основе математических моделей этих систем и устройств или соответствующие аналогичным системам и устройствам. В качестве математического ожидания и дисперсии при формировании набора случайных значений для принятого модельного закона распределения принимаются выборочные среднее значение и дисперсия, полученные по результатам измерений наблюдаемого случайного процесса. Особенность алгоритма заключается в проведении сравнения упорядоченных по возрастанию или убыванию измеренных значений наблюдаемого случайного процесса и сформированных наборов значений в соответствии с принятыми моделями законов распределения. Приведены результаты математического моделирования, иллюстрирующие применение данного алгоритма.

  3. Силаева В.А., Силаева М.В., Силаев А.М.
    Оценивание параметров моделей временных рядов с марковскими переключениями режимов
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 903-918

    В работе рассматривается задача оценивания параметров временных рядов, описываемых регрессионными моделями с марковскими переключениями двух режимов в случайные моменты времени и независимыми гауссовскими шумами. Для решения предлагается вариант EM-алгоритма, основанный на итерационной процедуре, в ходе которой происходит чередование оценивания параметров регрессии при заданной последовательности переключений режимов и оценивания последовательности переключений при заданных параметрах моделей регрессии. В отличие от известных методов оценивания параметров регрессий с марковскими переключениями режимов, которые основаны на вычислении апостериорных вероятностей дискретных состояний последовательности переключений, в работе находятся оптимальные по критерию максимума апостериорной вероятности оценки процесса переключений. В результате предлагаемый алгоритм оказывается более простым и требует меньшее количество расчетов. Компьютерное моделирование позволяет выявить факторы, влияющие на точность оценивания. К таким факторам относятся число наблюдений, количество неизвестных параметров регрессии, степень их различия в разных режимах работы, а также величина отношения сигнала к шуму, которую в моделях регрессии можно связать с величиной коэффициента детерминации. Предложенный алгоритм применяется для задачи оценивания параметров в моделях регрессии для доходности индекса РТС в зависимости от доходностей индекса S&P 500 и акций «Газпрома» за период с 2013 года по 2018 год. Проводится сравнение оценок параметров, найденных с помощью предлагаемого алгоритма, с оценками, которые формируются с использованием эконометрического пакета EViews, и с оценками обычного метода наименьших квадратов без учета переключений режимов. Учет переключений позволяет получить более точное представление о структуре статистической зависимости исследуемых переменных. В моделях с переключениями рост отношения сигнала к шуму приводит к тому, что уменьшаются различия в оценках, вырабатываемых предлагаемым алгоритмом и с помощью программы EViews.

    Просмотров за год: 36.
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.