Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'дискретные модели':
Найдено статей: 91
  1. Башкирцева И.А.
    Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571

    В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  2. Калинин И.Н., Глухарев К.К.
    Исследование интегральных характеристик перекрестков при помощи микроскопических моделей транспортных потоков
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 523-534

    Рассматривается проблема применимости микроскопического моделирования транспортных потоков к анализу достаточно больших фрагментов сетей на примере модели дискретного потока с безопасной дистанцией. Вводится понятие интегральных характеристик перекрестков и предлагается методика получения интегральных характеристик на основе данных численных экспериментов по моделированию потоков на заданном перекрестке. Методика применяется к кольцевому коммутатору с Т-образными перекрестками, анализируются полученные характеристики.

    Просмотров за год: 4. Цитирований: 7 (РИНЦ).
  3. Абгарян К.К., Журавлев А.А., Загордан Н.Л., Ревизников Д.Л.
    Дискретно-элементное моделирование внедрения шара в массивную преграду
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 71-79

    Дискретно-элементная модель, основанная на представлении ударника и преграды совокупностью плотно упакованных частиц, применена к задаче внедрения металлических шаров в массивные преграды. Для описания взаимодействия между частицами использовался двухпараметрический потенциал Леннарда–Джонса. Компьютерная реализация модели осуществлена с использованием распараллеливания вычислений на графических процессорах, что позволило добиться высокого пространственно-временного разрешения. На основе сравнения результатов компьютерного моделирования с экспериментальными данными идентифицирована зависимость энергии межчастичной связи от динамической твердости материалов. Показано, что использование данного подхода позволяет достаточно точно описать процесс внедрения ударника в преграду в диапазоне скоростей взаимодействия 500–2500 м/c.

    Просмотров за год: 5. Цитирований: 5 (РИНЦ).
  4. Кривовичев Г.В.
    Кинетические уравнения для моделирования диффузионных процессов методом решеточных уравнений Больцмана
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 919-936

    В работе рассмотрена система линейных кинетических уравнений с релаксационным членом типа Бхатнагара–Гросса–Крука для моделирования линейных диффузионных процессов с помощью метода решеточных уравнений Больцмана. Коэффициенты системы зависят от дискретных скоростей, определяемых точками шаблона, построенного в пространстве скоростей частиц. Система может рассматриваться как альтернативная математическая модель для описания диффузионного процесса. Рассматривается несколько случаев базовых шаблонов в пространстве скоростей частиц. Рассмотрены случаи зависящих от параметра коэффициентов. С использованием асимптотического метода Чепмена–Энскога показано, что система может быть сведена к линейному уравнению диффузии, а также получено выражение для коэффициента диффузии. Как результат анализа полученного выражения показано, что решения, получаемые по решеточным уравнениям Больцмана, обладают численной диффузией. Анализ устойчивости проводится посредством исследования волновых мод, допускаемых решениями гиперболической системы уравнений. Для случаев других шаблонов предложен алгоритм численного исследования устойчивости. В результате расчетов показано, что решения системы являются устойчивыми в широком диапазоне входных параметров. Показан достаточный характер физически допустимого условия положительности времени релаксации как условия устойчивости. Посредством аналитических, а также численных исследований показано, что решения в виде волновых мод обладают дисперсией, не типичной для решений линейного уравнения диффузии. Но при этом свойственные дисперсии искажения волнового пакета будут демпфироваться из-за наличия асимптотической устойчивости и в целом поведение решения близко к решению уравнения диффузии. Разностные схемы для построенной системы, помимо моделирования диффузии, могут быть использованы при решении стационарных задач методом установления и в методе расщепления для расчетов течений вязкой жидкости. Полученные результаты могут оказаться полезными при сравнении друг с другом теоретических свойств различных разностных схем метода решеточных уравнений Больцмана для численного моделирования диффузии.

    Просмотров за год: 25.
  5. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

  6. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

  7. Масловский А.Ю., Суменков О.Ю., Воркутов Д.А., Чуканов С.В.
    Применение дискретных методов многокритериальной оптимизации для построения модели цифрового предискажения сигнала усилителя мощности базовой станции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 281-300

    Осуществление передачи сигналов сотовой связи — одна из ключевых задач современного мира. Для улучшения сигнала передаваемой информации необходимо чтобы сигнал не искажался при усилении мощности на базовой станции сотовой связи. Поставленную задачу можно решать самыми различными способами, однако одним из самых простых решений, которое широко используется в индустрии, является добавление нелинейных искажений, позволяющих линеаризовать работу усилителя и устранять интермодуляционные искажения в областях спектра, не используемых для передачи сигнала. В силу большой нагрузки и работы в реальном времени модель, осуществляющая данные искажения, не должна быть громоздкой и иметь большое количество адаптируемых параметров. В данной статье производится анализ современных работ по теме многокритериальной оптимизации и построения моделей для решения задачи предискажения сигнала при помощи данных методов. В статье показывается, что возможно найти структуру (сохранив производительность) и имеющую меньшее количество используемых ресурсов, быстрее, чем полный перебор по всему словарю из заданных параметров.

  8. Фахретдинов М.И., Екомасов Е.Г.
    Локализованные волны уравнения $\varphi^4$ в модели с двумя протяженными примесями
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 437-449

    В данной работе рассматривается взаимодействие кинка уравнения $\varphi^4$ с двумя протяженными одинаковыми примесями. Протяженная примесь описывается с помощью функции прямоугольного вида. Анализируется случай притягивающей примеси. С помощью аналитических методов рассматривается случай малых амплитуд локализованных волн, когда возможно провести линеаризацию уравнений движения. Для численного решения использовался метод прямых для уравнений в частных производных. Для нахождения частот колебаний, локализованных на примесях волн, используется дискретное преобразование Фурье. Кинк запускался в направлении примесей с разными начальными скоростями. Изменялось также расстояние между двумя примесями. Показано, что при взаимодействии кинка с примесями на них возбуждаются долгоживущие локализованные волны бризерного типа. Исследована их структура и связанная динамика. Определено, как, изменяя параметры примесей и расстояние между ними, можно управлять типом и динамическими параметрами связанных колебаний, локализованных на примесях волн. Найдены возможные решения в виде синфазных, антифазных колебаний, в виде биений. Колебания локализованных волн происходят с излучением волн малой амплитуды. Спектр этих излучений состоит из двух частот. Первая приближенно равна $\sqrt{2}$, что соответствует величине частоты для хвоста воблингбризера уравнения $\varphi^4$. Вторая приближенно равна удвоенной частоте колебаний примесных мод. Найдено (как аналитически, так и численно) наличие двух возможных частот для связанных локализованных колебаний. Показано, что частоты сильно зависят от расстояния между примесями. С увеличением расстояния между примесями частоты сливаются в одну — частоту, полученную для случая одиночной примеси. Найденные численно и аналитически зависимости частот от расстояния между примесями хорошо совпадают для больших расстояний, когда взаимодействие между примесями слабое, и начинают заметно отличаться при малых расстояниях, когда взаимодействие между примесями сильное. Аналитическое значение величин полученных частот всегда больше численных. Показано, что зависимость амплитуды локализованных волн от начальной скорости кинка имеет несколько минимумов и максимумов.

  9. Топаж А.Г., Абрамова А.В., Толстопятов С.Е.
    Дискретные модели популяционной динамики: достоинства, проблемы и обоснование
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 267-284

    Работа посвящена анализу достоинств, недостатков и обоснований применимости дискретных моделей в динамике популяций. Под дискретизацией в общем смысле понимается замена непрерывных величин их дискретными аналогами, то есть сведение задачи от непрерывных к перечислимым множествам. Рассмотрены прецеденты использования временной, пространственной и структурной дискретизации в типичных задачах математической экологии и совершена попытка оценить степень адекватности и границы применимости соответствующих моделей.

    Просмотров за год: 6. Цитирований: 6 (РИНЦ).
  10. Муратов М.В., Петров И.Б., Левянт В.Б.
    Разработка математических моделей трещин для численного решения задач сейсморазведки с применением сеточно-характеристического метода
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 911-925

    Данная статья посвящена описанию разработанных математических моделей трещин, которые могут быть применены для численного решения задач сейсморазведки с использованием сеточно- характеристического метода на неструктурированных треугольных (в двумерном случае) и тетраэдральных (в трехмерном случае) сетках. Такой подход позволяет корректно обсчитывать динамические процессы в условиях неоднородностей в области интегрирования. В основе разработанных моделей неоднородностей лежит концепция бесконечно-тонкой трещины — трещина задается в виде контактной границы. Такой подход заметно сокращает потребление вычислительных ресурсов за счет отсутствия необходимости задания сетки внутри трещины. В то же время он позволяет задавать трещину дискретно в области интегрирования, что дает возможность наблюдать качественно новые эффекты, которые невозможно получить с применением эффективных моделей трещиноватости, активно используемых в вычислительной сейсмике.

    Основной задачей при разработке моделей было получение максимального точного результата. Разрабатывались модели, позволяющие получить отклик, близкий к отклику реально существующей трещины в геологической среде. Рассматривались газонасыщенные, флюидонасыщенные трещины, слипшиеся трещины, частично слипшиеся трещины, а также трещины с заданием сил динамического трения. Поведение трещины определялось характером задаваемого условия на контактной границе.

    Пустые трещины задавались условием свободной границы. Такое условие давало возможность полного отражения от трещины волнового фронта. Флюидонасыщенность обеспечивало условие свободного скольжения на контактной границе. При таком условии наблюдалось полное прохождение продольных волн через трещину и отражение поперечных. На слипшихся трещинах использовалось условие полного слипания. Для реальных трещин, в которых расстояние между створками не равномерное и местами происходит соприкосновение (слипание) створок, была предложена модель частично слипшейся трещины. На разных точках контактной границы трещины задавались разные условия: условия скольжения (при флюидонасыщении трещины) и слипания, свободной границы (при газонасыщении трещины) и слипания. Почти такой же эффект достигается использованием модели трещины с условием динамического трения. Однако ее существенным недостатком является невозможность задания доли слипшейся поверхности трещины в силу того, что коэффициент трения может принимать значения от нуля до бесконечности. Этого недостатка лишена модель частично слипшейся трещины.

    Просмотров за год: 9.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.