Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
-
Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381Просмотров за год: 2. Цитирований: 16 (РИНЦ).Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.
-
Модели нейронных сетей для анализа изображений с БПЛА при дистанционном лесопатологическом мониторинге хвойных лесов
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 641-663Рассмотрены основные задачи дистанционного лесопатологического мониторинга пораженных насекомыми-вредителями хвойных лесов. Показано, что при их решении необходимо использовать результаты мультиклассификации хвойных деревьев на изображениях высокого и сверхвысокого разрешения, оперативно получаемых при мониторинге путем съемки лесов с космических аппаратов или с беспилотных летательных аппаратов (БПЛА). Проведен аналитический обзор современных моделей и методов мультиклассификации изображений хвойных лесов и с учетом его результатов разработаны три модели полносверточных нейронных сетей Mo-U-Net, At-Mo-U-Net и Res-Mo-U-Net, основанные на классической модели U-Net, а также модифицирована модель трансформера Segformer. По RGB-изображениям поврежденных уссурийским полиграфом Polygraphus proximus деревьев пихты сибирской Abies sibirica, полученных с помощью фотокамеры на БПЛА, созданы два набора датасетов: первый набор включает фрагменты изображений и их эталонных масок сегментации размером 256 × 256 × 3 пикселей, а второй — фрагменты размером 480 × 480 × 3 пикселей. Проведены комплексные исследования каждой из обученных моделей нейросетей по точности классификации степени поражения (состояния здоровья) деревьев A. Sibirica на изображениях и по скорости вычисления моделей с использованием тестовых датасетов из каждого набора. Выявлено, что в случае фрагментов размером 256×256×3 пикселей предпочтение наряду с моделью Modified Segformer следует отдать модели с механизмом внимания At-Mo-U-Net, а в случае фрагментов размером 480 × 480 × 3 пикселей — гибридной модели с остаточными блоками Res-Mo-U-Net. Из результатов исследований точности классификации и скорости вычислений каждой из разработанных моделей сделан вывод о том, что при решении задачи мультиклассификации пораженных деревьев пихты в производственных масштабах предпочтение следует отдать модели Res-Mo-U-Net. Именно она является компромиссным вариантом, удовлетворяющим противоречащим друг другу требованиям высокой точности классификации деревьев на изображениях и высокой скорости вычислений модели.
-
Оптимизация размера классификатора при сегментации трехмерных точечных образов древесной растительности
Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 665-675Появление технологий лазерного сканирования произвело настоящую революцию в лесном хозяйстве. Их использование позволило перейти от изучения лесных массивов с помощью ручных измерений к компьютерному анализу точечных стереоизображений, называемых облаками точек.
Автоматическое вычисление некоторых параметров деревьев (таких как диаметр ствола) по облаку точек требует удаления точек листвы. Для выполнения этой операции необходима предварительная сегментация стереоизображения на классы «листва» и «ствол». Решение этой задачи зачастую включает использование методов машинного обучения.
Одним из самых популярных классификаторов, используемых для сегментации стереоизображений деревьев, является случайный лес. Этот классификатор достаточно требователен к объему памяти. В то же время размер модели машинного обучения может быть критичным при необходимости ее пересылки, что требуется, например, при выполнении распределенного обучения. В данной работе ставится цель найти классификатор, который был бы менее требовательным по памяти, но при этом имел бы сравнимую точность сегментации. Поиск выполняется среди таких классификаторов, как логистическая регрессия, наивный байесовский классификатор и решающее дерево. Кроме того, исследуется способ уточнения сегментации, выполненной решающим деревом, с помощью логистической регрессии.
Эксперименты проводились на данных из коллекции университета Гейдельберга. Было показано, что классификация с помощью решающего дерева, корректируемая с помощью логистической регрессии, способна давать результат, лишь немного проигрывающий результату случайного леса по точности, затрачивая при этом меньше времени и оперативной памяти. Разница в сбалансированной точности составляет не более процента на всех рассмотренных облаках, при этом суммарный размер и время предсказания классификаторов решающего дерева и логистической регрессии на порядок меньше, чем у случайного леса.
-
Разработка и исследование жесткого алгоритма анализа публикаций в Twitter и их влияния на движение рынка криптовалют
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 157-170Посты в социальных сетях являются важным индикатором, отображающим положение активов на финансовом рынке. В статье описывается жесткое решение задачи классификации для определения влияния активности в социальных сетях на движение финансового рынка. Отбираются аккаунты авторитетных в сообществе крипто-трейдеров-инфлюенсеров. В качестве данных используются специальные пакеты сообщений, которые состоят из текстовых постов, взятых из Twitter. Приведены способы предобработки текста, заключающиеся в лемматизации Stanza и применении регулярных выражений, для очищения зашумленных текстов, особенностью которых является многочисленное употребление сленговых слов и сокращений. Решается задача бинарной классификации, где слово рассматривается как элемент вектора единицы данных. Для более точного описания криптовалютной активности ищутся наилучшие параметры разметки для обработки свечей Binance. Методы выявления признаков, необходимых для точного описания текстовых данных и последующего процесса установления зависимости, представлены в виде машинного обучения и статистического анализа. В качестве первого используется отбор признаков на основе критерия информативности, который применяется при разбиении решающего дерева на поддеревья. Такой подход реализован в модели случайного леса и актуален для задачи выбора значимых для «стрижки деревьев» признаков. Второй же основан на жестком составлении бинарного вектора в ходе грубой проверки наличия либо отсутствия слова в пакете и подсчете суммы элементов этого вектора. Затем принимается решение в зависимости от преодоления этой суммой порогового значения, базирующегося на уровне, предварительно подобранном с помощью анализа частотного распределения упоминаний слова. Алгоритм, используемый для решения проблемы, был назван бенчмарком и проанализирован в качестве инструмента. Подобные алгоритмы часто используются в автоматизированных торговых стратегиях. В процессе исследования также описаны наблюдения влияния часто встречающихся в тексте слов, которые используются в качестве базиса размерностью 2 и 3 при векторизации.
-
Анализ эффективности методов машинного обучения в задаче распознавания жестов на основе данных электромиографических сигналов
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 175-194При разработке систем человеко-машинных интерфейсов актуальной является задача распознавания жестов. Для выявления наиболее эффективного метода распознавания жестов был проведен анализ различных методов машинного обучения, используемых для классификации движений на основе электромиографических сигналов мышц. Были рассмотрены такие методы, как наивный байесовский классификатор (НБК), дерево решений, случайный лес, градиентный бустинг, метод опорных векторов, метод $k$-ближайших соседей, а также ансамбли методов (НБК и дерево решений, НБК и градиентный бустинг, градиентный бустинг и дерево решений). В качестве метода получения информации о жестах была выбрана электромиография. Такое решение не требует расположения руки в поле зрения камеры и может быть использовано для распознавания движений пальцев рук. Для проверки эффективности выбранных методов распознавания жестов было разработано устройство регистрации электромиографического сигнала мышц предплечья, которое включает в себя три электрода и ЭМГ-датчик, соединенный с микрокон- троллером и блоком питания. В качестве жестов были выбраны: сжатие кулака, знак «большой палец», знак «Виктория», сжатие указательного пальца и взмах рукой справа налево. Оценка эффективности методов классификации проводилась на основе значений доли правильных ответов, точности, полноты, а также среднего значения времени работы классификатора. Данные параметры были рассчитаны для трех вариантов расположения электромиографических электродов на предплечье. По результатам тести- рования, наиболее эффективными методами являются метод $k$-ближайших соседей, случайный лес и ансамбль НБК и градиентного бустинга, средняя точность которого для трех положений электродов составила 81,55 %. Также было определено положение электродов, при котором методы машинного обучения достигают максимального значения точности распознавания. При таком положении один из дифференциальных электродов располагается на месте пересечения глубокого сгибателя пальцев и длинного сгибателя большого пальца, второй — над поверхностным сгибателем пальцев
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"