Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование полета и разрушения болида Бенешов
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.
Ключевые слова: болид, моделирование, движение, фрагментация, тепловой поток, прочность, процессы взаимодействия.Просмотров за год: 24. Цитирований: 1 (РИНЦ). -
Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.
-
Методика формирования многопрограммного управления изолированным перекрестком
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 295-303Наиболее простым и востребованным практикой методом управления светофорной сигнализацией является предрассчитанное регулирование, когда параметры работы светофорного объекта рассчитываются заранее и затем активируются согласно расписанию. В работе предложена методика формирования сигнального плана, позволяющая рассчитать программы регулирования и установить период их активности. Подготовка исходных данных для проведения расчета включает формирование временного ряда суточной интенсивности движения с интервалом 15 минут. При проведении полевых обследований возможно отсутствие части измерений интенсивности движения. Для восполнения недостающих значений предложено использование кубической сплайн-интерполяции временного ряда. Следующем шагом методики является расчет суточного набора сигнальных планов. В работе приведены зависимости, позволяющие рассчитать оптимальную длительность цикла регулирования и разрешающих движение фаз и установить период их активности. Существующие системы управления движением имеют ограничения на количество используемых программ регулирования. Для сокращения количества сигнальных планов и определения периода их активности используется кластеризация методом $k$-средних в пространстве длительности транспортных фаз. В новом суточном сигнальном плане длительность фаз определяется координатами полученных центров кластеров, а периоды активности устанавливаются элементами, вошедшими в кластер. Апробация на числовом примере показала, что при количестве кластеров 10 отклонение оптимальной длительности фаз от центров кластеров не превышает 2 с. Для проведения оценки эффективности разработанной методики на примере реального пересечения со светофорным регулированием. На основе натурных обследований схемы движения и транспортного спроса разработана микроскопическая модель для программы SUMO (Simulation of Urban Mobility). Оценка эффективности произведена на основе потерь транспорта, оцениваемых затратами времени на передвижение. Имитационное моделирование многопрограммного управления сигналами светофора показало снижение времени задержки (в сравнении с однопрограммным управлением) на 20 %. Предложенная методика позволяет автоматизировать процесс расчета суточных сигнальных планов и установки времени их активности.
Ключевые слова: светофорное регулирование, многопрограммное управление, временной ряд, кластеризация, $k$-средние. -
Релаксационная модель вязкого теплопроводного газа
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 23-43Представлена гиперболическая модель вязкого теплопроводного газа, в которой для гиперболизации уравнений использован подход Максвелла–Каттанео, обеспечивающий распространение волн с конечными скоростями. В модифицированной модели вместо оригинальных законов Стокса и Фурье использовались их релаксационные аналоги и показано, что при стремлении времен релаксации $\tau_\sigma^{}$ и $\tau_w^{}$ к нулю гиперболизированные уравнения приводятся к классической системе Навье–Стокса негиперболического типа с бесконечными скоростями перемещения вязких и тепловых волн. Отмечено, что рассматриваемая в работе гиперболизированная система уравнений движения вязкого теплопроводного газа инвариантна не только по отношению к преобразованиям Галилея, но и к повороту, поскольку при дифференцировании по времени компонентов тензора вязких напряжений использована производная Яуманна. Для интегрирования уравнений модели применены гибридный метод Годунова (ГМГ) и многомерный узловой метод характеристик. ГМГ предназначен для интегрирования гиперболических систем, в которых имеются как уравнения, записанные в дивергентном виде, так и уравнения, не приводящиеся к таковому (оригинальный метод Годунова применяется только для систем уравнений, представленных в дивергентной форме). При вычислении потоковых переменных на гранях смежных ячеек использован линеаризованный римановский решатель. Для дивергентных уравнений применена конечно-объемная, а для недивергентных — конечноразностная аппроксимация. Для расчета ряда задач в работе также использовался неконсервативный многомерный узловой метод характеристик, который базируется на расщеплении исходной системы уравнений на ряд одномерных подсистем, для решения которых использован одномерный узловой метод характеристик. С помощью описанных численных методов решен ряд модельных одномерных задач о распаде произвольного разрыва, а также рассчитано двумерное течение вязкого газа при взаимодействии ударного скачка с прямоугольной ступенькой, непроницаемой для газа.
-
Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.
-
Бессеточный алгоритм расчета взаимодействия крупных частиц с ударным слоем в сверхзвуковых гетерогенных потоках
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1007-1027Работа посвящена численному моделированию двухфазных течений, а именно расчету сверхзвукового обтекания затупленного тела потоком вязкого газа с примесью относительно крупных частиц, масса которых позволяет после отражения от поверхности выйти за пределы ударного слоя, двигаясь по инерции навстречу набегающему потоку. Натурные и вычислительные эксперименты показывают, что движение высокоинерционных частиц существенным образом изменяет структуру течения газа в ударном слое, а формирующиеся при этом направленные на тело импактные струи вызывают увеличение давления газа вблизи участков поверхности и кратный рост конвективного теплового потока.
Построена математическая модель обтекания затупленного тела сверхзвуковым потоком вязкого газа с твердыми частицами. Решение системы нестационарных уравнений Навье–Стокса в консервативных переменных осуществляется бессеточным методом, в основе которого лежит аппроксимация частных пространственных производных газодинамических величин и содержащих их функций методом наименьших квадратов на множестве распределенных в области расчета узлов. Расчет невязких потоков выполняется методом HLLC в сочетании с MUSCL-реконструкцией третьего порядка, вязких потоков — схемой второго порядка. МНК-аппроксимация частных производных параметров газа по направлению также применяется для реализации краевых условий Неймана на выходной границе области расчета, а также поверхностях обтекаемых тел, которые считаются изотермическими твердыми стенками.
Каждое движущееся тело окружено облаком расчетных узлов, принадлежащих его домену и перемещающихся вместе с ним в пространстве. Реализовано два подхода к моделированию перемещения объектов с учетом обратного влияния на течение газа: метод скользящих облаков фиксированной формы и эволюции единого облака узлов, представляющего собой объединение узлов разных доменов. Проведенные численные эксперименты подтвердили применимость предложенных методов к решению целевых задач моделирования движения крупных частиц в сверхзвуковом потоке.
Выполнена программная реализация представленных алгоритмов на основе технологии параллельных гетерогенных вычислений OpenCL. Представлены результаты моделирования движения крупной частицы вдоль оси симметрии сферы навстречу набегающему потоку с числом Маха $\mathrm{M}=6$.
-
О периодических режимах движения тела по горизонтальной шероховатой плоскости, реализуемых посредством перемещения двух внутренних масс
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 17-34Рассматривается механическая система, состоящая из твердого тела и двух масс, которые перемещаются внутри тела по взаимно перпендикулярным направляющим. Тело имеет плоскую грань, которая опирается на горизонтальную шероховатую плоскость. Движение масс внутри тела происходит в вертикальной плоскости по гармоническому закону с одним и тем же периодом. Предполагается, что силы трения, возникающие в области контакта тела и опорной плоскости, описываются классической моделью сухого кулоновского трения, а параметры задачи выбраны так, что тело может совершать безотрывное прямолинейное движение. Данная механическая система может служить простейшей моделью капсульного робота, движущегося по твердой поверхности посредством перемещения внутренних элементов.
В работе исследуются режимы движения тела, при которых его скорость изменяется периодически с периодом, равным периоду движения внутренних масс. Показано, что если в результате перемещения внутренних масс тело может начать движение из состояния покоя, то при любых допустимых значениях параметров задачи существует периодический режим движения. При изменении значений параметров может существенно меняться и характер периодического движения. В частности, возможны как реверсионные, так и безреверсионные режимы движения. В безреверсионном режиме тело движется в одном и том же направлении, а интервалы движения чередуются с интервалами покоя (залипания тела). В реверсионном режиме тело на временном интервале, равном одному периоду, движется как в положительном, так и в отрицательном направлении. В этом случае тело за период движения совершает две остановки. После остановки тело либо сразу продолжает движение в противоположном направлении, либо попадает в зону залипания и покоится в течение конечного промежутка времени, а затем начинает движение в противоположном направлении. Было также установлено, что при определенных значениях параметров возможен периодический реверсионный режим, при котором тело движется без залипания. Была проведена подробная классификация всех возможных типов периодических режимов движения. Дано их полное качественное описание и в трехмерном пространстве параметров задачи построены области существования каждого из возможных типов движения.
Ключевые слова: периодические движения, перемещение посредством внутренних масс, капсульные роботы, сухое трение. -
Компактная разностная схема для анизотропной задачи конвекции Дарси
Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 199-211Для моделирования гравитационной конвекции жидкости, насыщающей пористую среду, развивается компактная конечно-разностная схема. На основе закона Дарси с учетом анизотропии свойств проницаемости и теплопроводности рассматривается задача для прямоугольной области в переменных «функция тока» и «температура». На границах заданы условия непроницаемости и линейный по высоте профиль температуры. При определенных соотношениях между коэффициентами обратной проницаемости и теплопроводности данная система является косимметричной, при потере устойчивости механического равновесия от него ответвляется однопараметрическое семейство стационарных конвективных режимов. Разработана численная схема с конечно-разностной аппроксимацией четвертого порядка точности по пространственным координатам и с использованием метода Рунге – Кутты. Доказано, что построенная на девятиточечном шаблоне численная схема сохраняет свойство косимметрии исходной системы. Представлены результаты численного решения спектральной задачи по определению критических чисел Рэлея, отвечающих возникновению конвективных движений. Проведено сравнение с расчетами методом второго порядка точности и на основе комбинированной разностной схемы, обеспечивающей четвертый порядок аппроксимации по вертикальной координате. Показано, что с большой точностью критические числа являются двукратными при коэффициентах, обеспечивающих свойство косимметрии. Приведены результаты вычисления конвективных режимов и спектров устойчивости стационарных решений. Дана оценка эффективности предложенной компактной схемы.
Ключевые слова: компактная конечно-разностная схема, конвекция, модель Дарси, анизотропия, пористая среда, косимметрия. -
Метод поиска касательных в задаче быстродействия для колесного мобильного робота
Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 401-421Поиск оптимальной траектории движения является нетривиальной задачей, на решение которой направлено большое число исследований. Большинство этих исследований посвящено решению задачи в общем виде вне зависимости от модели движения объекта. В такой постановке поиск оптимальной траектории возможен только численными методами. Вместе с тем в некоторых случаях возможно нахождение оптимальной траектории в аналитическом виде. В данной статье рассмотрена задача быстродействия с фазовыми ограничениями для колесного мобильного робота, движущегося по горизонтальной плоскости. Математическая модель робота является кинематической. Фазовые ограничения соответствуют препятствиям на плоскости, заданным в виде непересекающихся кругов, которые требуется избегать при движении. Независимыми управляющими воздействиями являются скорости колес, которые ограничены по абсолютной величине. Такая постановка часто применяется в тех случаях, когда динамические переходные процессы несущественны, например при управлении медленно движущимися гусеничными или колесными устройствами, в которых приоритет отдается мощности двигателей, а не их скорости. В статье показывается, что оптимальная траектория движения из начальной точки в конечную в выбранной кинематической постановке представляет собой последовательность отрезков общих касательных к парам кругов и дуг окружностей этих кругов. Геометрически кратчайший путь между начальной и конечной точками также состоит из отрезков касательных и дуг окружностей, поэтому оптимальное по быстродействию движение соответствует одному из локальных минимумов при поиске кратчайшего пути. Предложен аналитический метод поиска оптимальной траектории движения, основанный на построении графа возможных траекторий, где ребрами являются прямолинейные отрезки и дуги, а вершинами — точки их соединений, и поиска кратчайшего (быстрейшего) пути на графе с помощью метода Дейкстры. Представлено обоснование метода. Приведены результаты численных экспериментов по нахождению оптимальной траектории.
-
О модели ветрового движения двухслойной вязкой жидкости
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 381-390Просмотров за год: 2.Найдено точное решение стационарной задачи ветрового движения вязкой двухслойной жидкости для двумерного в вертикальной плоскости течения и для дрейфовой составляющей трехмерного течения. На дне бассейна ставится условие проскальзывания, на вертикальных боковых стенках — условие непротекания. Приводятся примеры расчетов конкретных течений и сравнение полученных результатов с решениями аналогичной задачи по модели Экмана (без учета горизонтальной вязкости).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





