Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Автоматизация построения банков высококачественных концептов с использованием больших языковых моделей и мультимодальных метрик
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1555-1567Интерпретируемость моделей глубокого обучения стала центром исследований, особенно в таких областях, как здравоохранение и финансы. Модели с «бутылочным горлышком», используемые для выявления концептов, стали перспективным подходом для достижения прозрачности и интерпретируемости за счет использования набора известных пользователю понятий в качестве промежуточного представления перед слоем предсказания. Однако ручное аннотирование понятий не затруднено из-за больших затрат времени и сил. В нашей работе мы исследуем потенциал больших языковых моделей (LLM) для создания высококачественных банков концептов и предлагаем мультимодальную метрику для оценки качества генерируемых концептов. Мы изучили три ключевых вопроса: способность LLM генерировать банки концептов, сопоставимые с существующими базами знаний, такими как ConceptNet, достаточность унимодального семантического сходства на основе текста для оценки ассоциаций концептов с метками, а также эффективность мультимодальной информации для количественной оценки качества генерации концептов по сравнению с унимодальным семантическим сходством концепт-меток. Наши результаты показывают, что мультимодальные модели превосходят унимодальные подходы в оценке сходства между понятиями и метками. Более того, сгенерированные нами концепты для наборов данных CIFAR-10 и CIFAR-100 превосходят те, что были получены из ConceptNet и базовой модели, что демонстрирует способность LLM генерировать высококачественные концепты. Возможность автоматически генерировать и оценивать высококачественные концепты позволит исследователям работать с новыми наборами данных без дополнительных усилий.
Ключевые слова: интерпретируемость, большие языковые модели, нейросети с «бутылочным горлышком», машинное обучение. -
Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.
-
Нейросетевая реконструкция треков частиц для внутреннего CGEM-детектораэк сперимента BESIII
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1361-1381Реконструкция траекторий заряженных частиц в трековых детекторах является ключевой проблемой анализа экспериментальных данных для физики высоких энергий и ядерной физики. Поток данных в современных экспериментах растет день ото дня, и традиционные методы трекинга уже не в состоянии соответствовать этим объемам данных по скорости обработки. Для решения этой проблемы нами были разработаны два нейросетевых алгоритма, использующих методы глубокого обучения, для локальной (каждый трек в отдельности) и глобальной (все треки в событии) реконструкции треков применительно к данным трекового GEM-детектора эксперимента BM@N ОИЯИ. Преимущество глубоких нейронных сетей обусловлено их способностью к обнаружению скрытых нелинейных зависимостей в данных и возможностью параллельного выполнения операций линейной алгебры, лежащих в их основе.
В данной статье приведено описание исследования по обобщению этих алгоритмов и их адаптации к применению для внутреннего поддетектора CGEM (BESIII ИФВЭ, Пекин). Нейросетевая модель RDGraphNet для глобальной реконструкции треков, разработанная на основе реверсного орграфа, успешно адаптирована. После обучения на модельных данных тестирование показало обнадеживающие результаты: для распознавания треков полнота (recall) составила 98% и точность (precision) — 86%. Однако адаптация «локальной» нейросетевой модели TrackNETv2 потребовала учета специфики цилиндрического детектора CGEM (BESIII), состоящего всего из трех детектирующих слоев, и разработки дополнительного нейроклассификатора для отсева ложных треков. Полученная программа TrackNETv2.1 протестирована в отладочном режиме. Значение полноты на первом этапе обработки составило 99%. После применения классификатора точность составила 77%, при незначительном снижении показателя полноты до 94%. Данные результаты предполагают дальнейшее совершенствование модели локального трекинга.
Ключевые слова: реконструкция треков, GEM-детекторы, глубокое обучение, сверточные нейронные сети, графовые нейросети. -
Эффективная диагностика сердечно-сосудистых заболеваний с использованием композиционного глубокого обучения и техники объяснимого искусственного интеллекта
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1651-1666Сердечно-сосудистые заболевания на протяжении последних десятилетий представляют собой серьезную угрозу здоровью населения во всем мире, независимо от уровня развития страны. Ранняя диагностика и постоянный медицинский контроль могли бы значительно снизить смертность от этих заболеваний. Однако существующие системы здравоохранения зачастую не в состоянии обеспечить необходимый уровень мониторинга пациентов из-за ограниченных ресурсов.
В рамках нашего исследования мы использовали метод SHAP для объяснения работы модели глубокого обучения Bi-LSTM+CNN, разработанной для прогнозирования сердечно-сосудистых заболеваний. Путем балансировки данных и применения кросс-валидации мы достигли высокой точности (99,05%), полноты (99%) и F1-меры (99%) модели. Интерпретируемость модели, обеспечиваемая методом SHAP, повышает доверие медицинских специалистов к полученным результатам и способствует более широкому внедрению искусственного интеллекта в клиническую практику.
Ключевые слова: объяснимый ИИ, обратное исключение, REFCV, сердечно-сосудистые заболевания, здравоохранение, глубокое обучение.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"