Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'глия':
Найдено статей: 2
  1. Крючечникова А.Н., Левдик Т.Г., Браже А.Р.
    Моделирование морфологии астроцитов с применением алгоритма колонизации пространства
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 465-481

    В настоящей работе рассматривается феноменологический алгоритм генерации морфологии глиальных клеток мозга — астроцитов, основанный на морфометрических данных протоплазматических астроцитов и общих тенденциях развития данного типа клеток in vivo, описанных в литературе. Мы адаптировали алгоритм пространственной колонизации (Space Colonization Algorithm, SCA) для процедурной генерации полной астроцитарной морфологии. Используемые в генерации аттракторные точки распределялись в пространственном объеме в соответствии с плотностью распределения синапсов в ткани гиппокампа на первой неделе постнатального развития мозга крысы. Нами были проанализированы и сопоставлены данные реконструкций астроцитарных морфологий на разных этапах развития мозга с использованием таких методик и параметров, как анализ Шолля, число точек ветвления, число терминалей, общая длина дерева и максимальный порядок ветвления. Используя данные морфометрического анализа протоплазматических астроцитов животных разных возрастов, были подобраны необходимые параметры генерации для получения наиболее реалистичных трехмерных моделей морфологии клеток. Мы показали, что разработанный нами алгоритм позволяет не только получить геометрию отдельных клеток, например, для задач вычислительной биологии, но и воссоздать феномен доменной организации клеточной популяции. Доменная организация в ходе генерации морфологий возникает из-за конкуренции клеток за территорию и присвоения их отростками уникальных аттракторных точек, которые становятся недоступными для других клеток и их отростков. Кроме того, нами было разработано дополнение оригинального алгоритма, позволяющее производить генерацию морфологии в две фазы, имитируя двухстадийное развитие структуры астроцитов на первой и третьей-четвертой неделях постнатального развития мозга крыс. Для достижения этого результата мы прибегаем к введению двух типов аттракторов, чтобы разделить две различные стратегии роста во времени: быстрое исследование пространства слабоветвящимися отростками и созревание сложной морфологии за счет обильного ветвления. Мы предполагаем, что модификация алгоритма с введением динамической генерации аттракторов может объяснить процесс формирования тонких структур астроцитарной клетки.

  2. Коваленко С.Ю., Юсубалиева Г.М.
    Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123

    В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.

    Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.

    Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.

    В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.

    Просмотров за год: 14.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.