Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'вычислительные сети':
Найдено статей: 49
  1. В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
    Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть.

    Просмотров за год: 2. Цитирований: 8 (РИНЦ).
  2. В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.

  3. Приведены результаты исследований по идентификации каналов управляемого объекта, основанные на постобработке измерений с созданием модели многовходового управляемого объекта и последующем активном вычислительном эксперименте. Построение модели управляемого объекта осуществляется путем аппроксимации его поведения нейросетевой моделью по трендам, полученным в ходе пассивного эксперимента в режиме нормальной эксплуатации. Рекуррентная нейронная сеть, имеющая в своем составе элементы в виде обратных связей, позволяет моделировать поведение динамических объектов. Временны́е задержки входных сигналов и сигналов обратных связей позволяют моделировать поведение инерционных объектов с чистым запаздыванием. Обученная на примерах функционирования объекта с системой управления модель представлена динамической нейронной сетью и моделью регулятора с известной функцией регулирования. Нейросетевая модель эмулирует поведение системы и используется для проведения на ней опытов активного вычислительного эксперимента. Нейросетевая модель позволяет получить отклик управляемого объекта на испытательное воздействие, в том числе и на периодическое. По полученной комплексной частотной характеристике с применением метода наименьших квадратов находят значения параметров передаточной функции каналов объекта. Представлен пример идентификации канала имитационной системы управления. Имитационный объект имеет два входа и один выход и обладает различным транспортным запаздыванием по каналам передачи. Один из входов является управляющим воздействием, второй является контролируемым возмущением. Выходная управляемая величина изменяется в результате управляющего воздействия, вырабатываемого регулятором, работающим по пропорционально-интегральному закону регулирования, на основании отклонения управляемой величины от задания. Найденные параметры передаточных функций каналов имитационного объекта близки к значениям параметров исходного имитационного объекта. Приведенная ошибка реакции на единичное ступенчатое воздействие модели системы управления, построенной по результатам идентификации имитационной системы управления, не превышает 0.08. Рассматриваемые объекты относятся к классу технологических процессов с непрерывным характером производства. Подобные объекты характерны для химической, металлургической, горно-обогатительной, целлюлозно-бумажной и ряда других отраслей промышленности.

    Просмотров за год: 10.
  4. Котлярова Е.В., Гасников А.В., Гасникова Е.В., Ярмошик Д.В.
    Поиск равновесий в двухстадийных моделях распределения транспортных потоков по сети
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 365-379

    В работе описывается двухстадийная модель равновесного распределения транспортных потоков. Модель состоит из двух блоков, где первый блок — модель расчета матрицы корреспонденций, а второй блок — модель равновесного распределения транспортных потоков по путям. Первая модель, используя матрицу транспортных затрат (затраты на перемещение из одного района в другой, в данном случае — время), рассчитывает матрицу корреспонденций, описывающую потребности в объемах передвижения из одного района в другой район. Для решения этой задачи предлагается использовать один из наиболее популярных в урбанистике способов расчета матрицы корреспонценций — энтропийную модель. Вторая модель на базе равновесного принципа Нэша–Вардропа (каждый водитель выбирает кратчайший для себя путь) описывает, как именно потребности в перемещениях, задаваемые матрицей корреспонденций, распределяются по возможным путям. Таким образом, зная способы распределения потоков по путям, можно рассчитать матрицу затрат. Равновесием в двухстадийной модели транспортных потоков называют неподвижную точку цепочки из этих двух моделей. Практически ранее отмеченную задачу поиска неподвижной точки решали методом простых итераций. К сожалению, на данный момент вопрос сходимости и оценки скорости сходимости для этого метода не изучен. Кроме того, при численной реализации алгоритма возникает множество проблем. В частности, при неудачном выборе точки старта возникают ситуации, в которых алгоритм требует вычисления экстремально больших чисел и превышает размер доступной памяти даже в самых современных вычислительных машинах. Поэтому в статье предложены способ сведения задачи поиска описанного равновесия к задаче выпуклой негладкой оптимизации и численный способ решения полученной задачи оптимизации. Для обоих методов решения задачи были проведены численные эксперименты. Авторами использовались данные для Владивостока (для этого была обработана информация из различных источников и собрана в новый пакет) и двух небольших городов США. Методом простой прогонки двух блоков сходимости добиться не удалось, тогда как вторая модель для того же набора данных продемонстрировала скорость сходимости $k^{−1.67}$.

  5. Черемисина Е.Н., Сеннер А.Е.
    Применение ГИС ИНТЕГРО в задачах поиска месторождений нефти и газа
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 439-444

    В основу системы интегрированной интерпретации геофизических данных при изучении глубинного строения Земли положена система ГИС ИНТЕГРО, являющаяся геоинформационной системой функционирования разнообразных вычислительных и аналитических приложений при решении различных геологических задач. ГИС ИНТЕГРО включает в себя многообразные интерфейсы, позволяющие изменять форму представления данных (растр, вектор, регулярная и нерегулярная сеть наблюдений), блок преобразования картографических проекций, а также прикладные блоки, включающие блок интегрированного анализа данных и решения прогнозно-диагностических задач.

    Методический подход базируется на интеграции и комплексном анализе геофизических данных по региональным профилям, геофизических потенциальных полей и дополнительной геологической информации на изучаемую территорию.

    Аналитическое обеспечение включает пакеты трансформаций, фильтрации, статистической обработки полей, расчета характеристик, выделения линеаментов, решения прямых и обратных задач, интегрирования геоинформации.

    Технология и программно-аналитическое обеспечение апробировались при решении задач тектонического районирования в масштабах 1:200000, 1:1000000 в Якутии, Казахстане, Ростовской области, изучения глубинного строения по региональным профилям 1:ЕВ, 1-СБ, 2-СБ, 3-СБ и 2-ДВ, прогноза нефтегазоносности в районах Восточной Сибири, Бразилии.

    Просмотров за год: 4.
  6. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

  7. Кхан С.А., Шулепина С., Шулепин Д., Лукманов Р.А.
    Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619

    В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.

    В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.

  8. Кутовский Н.А., Нечаевский А.В., Ососков Г.А., Пряхина Д.И., Трофимов В.В.
    Моделирование межпроцессорного взаимодействия при выполнении MPI-приложений в облаке
    Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 955-963

    В Лаборатории информационных технологий (ЛИТ) Объединенного института ядерных исследований (ОИЯИ) планируется создание облачного центра параллельных вычислений, что позволит существенно повысить эффективность выполнения численных расчетов и ускорить получение новых физически значимых результатов за счет более рационального использования вычислительных ресурсов. Для оптимизации схемы параллельных вычислений в облачной среде эту схему необходимо протестировать при различных сочетаниях параметров оборудования (количества и частоты процессоров, уровней распараллеливания, пропускной способности коммуникационной сети и ее латентности). В качестве тестовой была выбрана весьма актуальная задача параллельных вычислений длинных джозефсоновских переходов (ДДП) с использованием технологии MPI. Проблемы оценки влияния вышеуказанных факторов вычислительной среды на скорость параллельных вычислений тестовой задачи было предложено решать методом имитационного моделирования, с использованием разработанной в ЛИТ моделирующей программы SyMSim.

    Работы, выполненные по имитационному моделированию расчетов ДДП в облачной среде с учетом межпроцессорных соединений, позволяют пользователям без проведения серии тестовых запусков в реальной компьютерной обстановке подобрать оптимальное количество процессоров при известном типе сети, характеризуемой пропускной способностью и латентностью. Это может существенно сэкономить вычислительное время на счетных ресурсах, высвободив его для решения реальных задач. Основные параметры модели были получены по результатам вычислительного эксперимента, проведенного на специальном облачном полигоне для MPI-задач из 10 виртуальных машин, взаимодействующих между собой через Ethernet-сеть с пропускной способностью 10 Гбит/с. Вычислительные эксперименты показали, что чистое время вычислений спадает обратно пропорционально числу процессоров, но существенно зависит от пропускной способности сети. Сравнение результатов, полученных эмпирическим путем, с результатами имитационного моделирования показало, что имитационная модель корректно моделирует параллельные расчеты, выполненные с использованием технологии MPI, и подтвердило нашу рекомендацию, что для быстрого счета задач такого класса надо одновременно с увеличением числа процессоров увеличивать пропускную способность сети. По результатам моделирования удалось вывести эмпирическую аналитическую формулу, выражающую зависимость времени расчета от числа процессоров при фиксированной конфигурации системы. Полученная формула может применяться и для других подобных исследований, но требует дополнительных тестов по определению значений переменных.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  9. Конюхов И.В., Конюхов В.М., Черница А.А., Дюсенова А.
    Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636

    Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.

  10. Адамовский Е.Р., Чертков В.М., Богуш Р.П.
    Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146

    Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.