Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'вычислительные модели':
Найдено статей: 179
  1. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

  2. Василевский Ю.В., Симаков С.С., Гамилов Т.М., Саламатова В.Ю., Добросердова Т.К., Копытов Г.В., Богданов О.Н., Данилов А.А., Дергачев М.А., Добровольский Д.Д., Косухин О.Н., Ларина Е.В., Мелешкина А.В., Мычка Е.Ю., Харин В.Ю., Чеснокова К.В., Шипилов А.А.
    Персонализация математических моделей в кардиологии: трудности и перспективы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 911-930

    Большинство биомеханических задач, представляющих интерес для клиницистов, могут быть решены только с помощью персонализированных математических моделей. Такие модели позволяют формализовать и взаимоувязать ключевые патофизиологические процессы, на основе клинически доступных данных оценить неизмеряемые параметры, важные для диагностики заболеваний, спрогнозировать результат терапевтического или хирургического вмешательства. Использование моделей в клинической практике накладывает дополнительные ограничения: практикующие врачи требуют валидации модели на клинических случаях, быстроту и автоматизированность всей расчетной технологической цепочки от обработки входных данных до получения результата. Ограничения на время расчета, определяемые временем принятия врачебного решения (порядка нескольких минут), приводят к необходимости использования методов редукции, корректно описывающих исследуемые процессы в рамках численных моделей пониженной размерности или в рамках методов машинного обучения.

    Персонализация моделей требует пациентоориентированной оценки параметров модели и создания персонализированной геометрии расчетной области и построения расчетной сетки. Параметры модели оцениваются прямыми измерениями, либо методами решения обратных задач, либо методами машинного обучения. Требование персонализации моделей накладывает серьезные ограничения на количество настраиваемых параметров модели, которые могут быть измерены в стандартных клинических условиях. Помимо параметров, модели включают краевые условия, которые также должны учитывать особенности пациента. Методы задания персонализированных краевых условий существенно зависят от решаемой клинической задачи, зоны ее интереса и доступных клинических данных. Построение персонализированной области посредством сегментации медицинских изображений и построение расчетной сетки, как правило, занимают значительную долю времени при разработке персонализированной вычислительной модели, так как часто выполняются в ручном или полуавтоматическом режиме. Разработка автоматизированных методов постановки персонализированных краевых условий и сегментации медицинских изображений с последующим построением расчетной сетки является залогом широкого использования математического моделирования в клинической практике.

    Цель настоящей работы — обзор и анализ наших решений по персонализации математических моделей в рамках трех задач клинической кардиологии: виртуальной оценки гемодинамической значимости стенозов коронарных артерий, оценки изменений системного кровотока после гемодинамической коррекции сложных пороков сердца, расчета характеристик коаптации реконструированного аортального клапана.

  3. Лихачев И.В., Галзитская О.В., Балабаев Н.К.
    Исследование механических свойств C-кадгерина методом молекулярной динамики
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735

    В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.

    Просмотров за год: 5.
  4. В статье обсуждается проблема влияния целей исследования на структуру многофакторной модели регрессионного анализа (в частности, на реализацию процедуры снижения размерности модели). Демонстрируется, как приведение спецификации модели множественной регрессии в соответствие целям исследования отражается на выборе методов моделирования. Сравниваются две схемы построения модели: первая не позволяет учесть типологию первичных предикторов и характер их влияния на результативные признаки, вторая схема подразумевает этап предварительного разбиения исходных предикторов на группы (в соответствии с целями исследования). На примере решения задачи анализа причин выгорания творческих работников показана важность этапа качественного анализа и систематизации априори отобранных факторов, который реализуется не вычислительными средствами, а за счет привлечения знаний и опыта специалистов в изучаемой предметной области.

    Представленный пример реализации подхода к определению спецификации регрессионной модели сочетает формализованные математико-статистические процедуры и предшествующий им этап классификации первичных факторов. Наличие указанного этапа позволяет объяснить схему управляющих (корректирующих) воздействий (смягчение стиля руководства и усиление одобрения приводят к снижению проявлений тревожности и стресса, что, в свою очередь, снижает степень выраженности эмоционального истощения участников коллектива). Предварительная классификация также позволяет избежать комбинирования в одной главной компоненте управляемых и неуправляемых, регулирующих и управляемых признаков-факторов, которое могло бы ухудшить интерпретируемость синтезированных предикторов.

    На примере конкретной задачи показано, что отбор факторов-регрессоров — это процесс, требующий индивидуального решения. В рассмотренном случае были последовательно использованы: систематизация признаков, корреляционный анализ, метод главных компонент, регрессионный анализ. Первые три метода позволили существенно сократить размерность задачи, что не повлияло на достижение цели, для которой эта задача была поставлена: были показаны существенные меры управляющего воздействия на коллектив, позволяющие снизить степень эмоционального выгорания его участников.

  5. Юдин Н.Е., Гасников А.В.
    Регуляризация и ускорение метода Гаусса – Ньютона
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1829-1840

    Предлагается семейство методов Гаусса – Ньютона для решения оптимизационных задачи систем нелинейных уравнений, основанное на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. В работе представлено развитие схемы метода трех квадратов с добавлением моментного члена к правилу обновления искомых параметров в решаемой задаче. Получившаяся схема обладает несколькими замечательными свойствами. Во-первых, в работе алгоритмически описано целое параметрическое семейство методов, минимизирующих функционалы специального вида: композиции невязки нелинейного уравнения и унимодального функционала. Такой функционал, целиком согласующийся с парадигмой «серого ящика» в описании задачи, объединяет в себе большое количество решаемых задач, связанных с приложениями в машинном обучении, с задачами восстановления регрессионной зависимости. Во-вторых, полученное семейство методов описывается как обобщение нескольких форм алгоритма Левенберга – Марквардта, допускающих реализацию в том числе и в неевклидовых пространствах. В алгоритме, описывающем параметрическое семейство методов Гаусса – Ньютона, используется итеративная процедура, осуществляющая неточное параметризованное проксимальное отображение и сдвиг с помощью моментного члена. Работа содержит детальный анализ эффективности предложенного семейства методов Гаусса – Ньютона, выведенные оценки учитывают количество внешних итераций алгоритма решения основной задачи, точность и вычислительную сложность представления локальной модели и вычисления оракула. Для семейства методов выведены условия сублинейной и линейной сходимости, основанные на неравенстве Поляка – Лоясиевича. В обоих наблюдаемых режимах сходимости локально предполагается наличие свойства Липшица у невязки нелинейной системы уравнений. Кроме теоретического анализа схемы, в работе изучаются вопросы ее практической реализации. В частности, в проведенных экспериментах для субоптимального шага приводятся схемы эффективного вычисления аппроксимации наилучшего шага, что позволяет на практике улучшить сходимость метода по сравнению с оригинальным методом трех квадратов. Предложенная схема объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса – Ньютона, в добавок к этому в работе предложена монотонная моментная модификация семейства разработанных методов, не замедляющая поиск решения в худшем случае и демонстрирующая на практике улучшение сходимости метода.

  6. Рид Р., Кокс М.А., Ригли Т., Мелладо Б.
    Характеристика тестирования центрального процессора на базе процессоров ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 581-586

    Большие научные проекты генерируют данные на всё более возрастающих скоростях. Типичные методы включают в себя хранение данных на диске, после незначительного фильтрования, а затем их обработку на больших компьютерных фермах. Производство данных достигло той точки, когда требуется обработка в режиме on-line, чтобы отфильтровать данные до управляемых размеров. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах для обеспечения массивного распараллеливания для вычислений потока данных (DSC). Главное преимущество в использовании систем на одном кристалле (SoCs) присуще самой философии этой разработки. Системы на микросхеме, прежде всего, используются в мобильных устройствах и, следовательно, потребляют меньше энергии при своей относительно хорошей производительности. Дано описание тестирования трех различных моделей процессоров ARM.

    Просмотров за год: 1.
  7. Ригли Т., Рид Р., Мелладо Б.
    Описание тестирования памяти однокристальных систем на основе ARM
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 607-613

    Мощность вычислений традиционно находится в фокусе при разработке крупномасштабных вычислительных систем, в большинстве случаев такие проекты остаются плохо оборудованными и не могут эффективно справляться с ориентированными на высокую производительность рабочими нагрузками. Кроме того, стоимость и вопросы энергопотребления для крупномасштабных вычислительных систем всё ещё остаются источником беспокойства. Потенциальное решение включает в себя использование низко затратных процессоров ARM с маленькой мощностью в больших массивах в манере, которая обеспечивает массивное распараллеливание и высокую пропускную способность, производительность (относительно существующих крупномасштабных вычислительных проектов). Предоставление большего приоритета производительности и стоимости повышает значимость производительности оперативной памяти и оптимизации проекта до высокой производительности всей системы. Используя несколько эталонных тестов производительности оперативной памяти для оценки различных аспектов производительности RAM и кэш-памяти, мы даем описание производительности четырех различных моделей однокристальной системы на основе ARM, а именно Cortex-A9, Cortex-A7, Cortex-A15 r3p2 и Cortex-A15 r3p3. Затем мы обсуждаем значимость этих результатов для вычислений большого объема и потенциала для ARM- процессоров.

  8. Богданов А.В., Дегтярева Я.А., Захарчук Е.А., Тихонова Н.А., Фукс В.Р., Храмушин В.Н.
    Интерактивный графический инструментарий глобального вычислительного эксперимента в службе морских оперативных прогнозов
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 641-648

    Эффективность и полнота численного моделирования в океанологии и гидрометеорологии всецело обусловливаются алгоритмическими особенностями построения интерактивного вычислительного эксперимента в масштабах Мирового океана с адаптивным покрытием закрытых морей и прибрежных акваторий уточненными математическими моделями, с возможностью программного распараллеливания уточняющих расчетов вблизи конкретных — защищаемых участков морского побережья. Важной составляющей исследований представляются методы непрерывной графической визуализации в ходе вычислений, в том числе осуществляемой в параллельных процессах с общей оперативной памятью или по контрольным точкам на внешних носителях. Результаты вычислительных экспериментов используются в описании гидродинамических процессов вблизи побережья, учет которых важен в организации морских служб контроля и прогноза опасных морских явлений.

    Цитирований: 1 (РИНЦ).
  9. Ершов Н.М., Попова Н.Н.
    Естественные модели параллельных вычислений
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785

    Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.

    Просмотров за год: 17. Цитирований: 2 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.