Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'вычисления на краю':
Найдено статей: 3
  1. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1261-1264
  2. Клименко А.Б.
    Математическая модель и эвристические методы организации распределенных вычислений в системах интернета вещей
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 851-870

    В настоящее время интенсивное развитие получило направление в рамках теории распределенных вычислений, когда вычислительные задачи решаются распределенно коллективом ресурсно ограниченных устройств. На практике такой сценарий реализуется при обработке данных в системах интернета вещей, когда с целью снижения латентности систем и загруженности сетевой инфраструктуры данные обрабатываются на вычислительных устройствах края сети, в то время как стремительный рост и распространение систем интернета вещей ставят вопрос о необходимости разработки методов снижения ресурсоемкости производимых вычислений. Ресурсная ограниченность вычислительных устройств ставит следующие вопросы распределения вычислительных ресурсов: во-первых, необходимость учета ресурсной стоимости транзита данных между решаемыми на различных устройствах задачах, во-вторых, необходимость учета ресурсной стоимости непосредственно процесса распределения вычислительных ресурсов, что особенно актуально для групп автономных устройств (роботы различных типов, сенсорные сети и др.). Анализ современных публикаций, представленных в открытом доступе, продемонстрировал отсутствие предложенных моделей или методов распределения вычислительных ресурсов, которые бы совместно учитывали перечисленное, что делает создание новой математической модели организации распределенных вычислений в системах интернета вещей и методов ее решения актуальными.

    В данной статье предложены новая математическая модель распределения вычислительных ресурсов и эвристические методы решения получаемой задачи оптимизации, что в комплексе реализует организацию распределенных вычислений в системах интернета вещей. Рассматривается сценарий, когда в группе устройств имеется лидер, который принимает решение о распределении вычислительных ресурсов, в том числе и собственных, для распределенного решения вычислительных задач с наличием информационных обменов. Также предполагается, что отсутствует априорная информация о том, какому устройству назначена роль лидера, и о маршрутах миграции вычислительных задач на устройства.

    Результаты экспериментального исследования продемонстрировали целесообразность использования предложенных моделей и эвристических методов: достигается распределение вычислительных ресурсов со снижением ресурсной стоимости решения вычислительной задачи до 52 % при учете ресурсной стоимости транзита данных, экономия ресурсов до 73 % при дополнении основных критериев оптимизации распределения задач критерием минимизации количества и расстояний миграций подзадач вычислительной задачи (ВЗ), а также снижение ресурсной стоимости решения задачи распределения вычислительных ресурсов до 28 раз со снижением качества полученного распределения до 10 %.

  3. Настоящая статья описывает разработанную авторами модель построения распределенной вычислительной сети и осуществления в ней распределенных вычислений, которые выполняются в рамках программно-информационной среды, обеспечивающей управление информационными, автоматизированными и инженерными системами интеллектуальных зданий. Представленная модель основана на функциональном подходе с инкапсуляцией недетерминированных вычислений и различных побочных эффектов в монадические вычисления, что позволяет применять все достоинства функционального программирования для выбора и исполнения сценариев управления различными аспектами жизнедеятельности зданий и сооружений. Кроме того, описываемая модель может использоваться совместно с процессом интеллектуализации технических и социотехнических систем для повышения уровня автономности принятия решений по управлению значениями параметров внутренней среды здания, а также для реализации методов адаптивного управления, в частности применения различных техник и подходов искусственного интеллекта. Важной частью модели является направленный ациклический граф, который представляет собой расширение блокчейна с возможностью существенным образом снизить стоимость транзакций с учетом выполнения смарт-контрактов. По мнению авторов, это позволит реализовать новые технологии и методы (распределенный реестр на базе направленного ациклического графа, вычисления на краю и гибридную схему построения искусственных интеллектуальных систем) и все это вместе использовать для повышения эффективности управления интеллектуальными зданиями. Актуальность представленной модели основана на необходимости и важности перевода процессов управления жизненным циклом зданий и сооружений в парадигму Индустрии 4.0 и применения для управления методов искусственного интеллекта с повсеместным внедрением автономных искусственных когнитивных агентов. Новизна модели вытекает из совокупного рассмотрения распределенных вычислений в рамках функционального подхода и гибридной парадигмы построения искусственных интеллектуальных агентов для управления интеллектуальными зданиями. Работа носит теоретический характер. Статья будет интересна ученым и инженерам, работающим в области автоматизации технологических и производственных процессов как в рамках интеллектуальных зданий, так и в части управления сложными техническими и социотехническими системами в целом.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.