Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование траекторий временных рядов с помощью уравнения Лиувилля
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 585-598Представлен алгоритм моделирования ансамбля траекторий нестационарных временных рядов. Построена численная схема аппроксимации выборочной плотности функции распределения в задаче с закрепленными концами, когда начальное распределение за заданное количество шагов переходит в определенное конечное распределение, так, что на каждом шаге выполняется полугрупповое свойство решения уравнения Лиувилля. Модель позволяет численно построить эволюционирующие плотности функций распределения при случайном переключении состояний системы, порождающей исходный временной ряд.
Основная проблема, рассматриваемая в работе, связана с тем, что при численной реализации левосторонней разностной производной по времени решение становится неустойчивым, но именно такой подход отвечает моделированию эволюции. При выборе неявных устойчивых схем с «заходом в будущее» используется итерационный процесс, который на каждом своем шаге не отвечает полугрупповому свойству. Если же моделируется некоторый реальный процесс, в котором предположительно имеет место целеполагание, то желательно использовать схемы, которые порождают модель переходного процесса. Такая модель используется в дальнейшем для того, чтобы построить предиктор разладки, который позволит определить, в какое именно состояние переходит изучаемый процесс до того, как он действительно в него перешел. Описываемая в статье модель может использоваться как инструментарий моделирования реальных нестационарных временных рядов.
Схема моделирования состоит в следующем. Из заданного временного ряда отбираются фрагменты, отвечающие определенным состояниям, например трендам с заданными углами наклона и дисперсиями. Из этих фрагментов составляются эталонные распределения состояний. Затем определяются эмпирические распределения длительностей пребывания системы в указанных состояниях и длительности времени перехода из состояния в состояние. В соответствии с этими эмпирическими распределениями строится вероятностная модель разладки и моделируются соответствующие траектории временного ряда.
-
Статистический анализ фазы квазигармонического сигнала методом моментов как инструмент оценивания параметров сигнала
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1037-1049В работе представлены результаты теоретического исследования особенностей статистического распределения фазы квазигармонического сигнала, формируемого в результате воздействия гауссовского шума на исходно гармонический сигнал. Выявленные особенности распределения фазы легли в основу развиваемого оригинального метода оценивания параметров исходного, неискаженного сигнала. Показано, что задача оценивания исходного значения фазы может эффективно решаться расчетом математического ожидания результатов выборочных измерений фазы, в то время как для решения задачи оценивания второго параметра распределения фазы — параметра уровня сигнала относительно шума — предлагается использовать зависимость дисперсии выборочных значений фазы от данного параметра. Для решения этой задачи используются полученные в явном виде аналитические формулы для моментов низших порядков распределения фазы, развит и обоснован новый подход к оцениванию параметров квазигармонического сигнала на основе измерения величины второго центрального момента, т. е. разброса выборочных значений фазы. В частности, применение данного метода обеспечивает высокоточное измерение амплитудных характеристик анализируемого сигнала посредством проведения лишь фазовых измерений. Численные результаты, полученные в ходе проведенного компьютерного моделирования, подтверждают теоретические выводы и эффективность разработанного метода. В работе обоснованы существование и единственность решения задачи оценивания параметров сигнала методом моментов. Показано, что функция, отображающая зависимость второго центрального момента от искомого параметра отношения сигнала к шуму, является монотонно убывающей и тем самым однозначной функцией искомого параметра. Разработанный метод оценивания параметров сигнала представляет интерес для решения широкого круга научных и прикладных задач, связанных с необходимостью измерения уровня сигнала и его фазы, в таких областях, как обработка данных в системах медицинской диагностической визуализации, обработка радиосигналов, радиофизика, оптика, радионавигация, метрология.
-
Определение характеристик случайного процесса путем сравнения со значениями на основе моделей законов распределения
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1105-1118Эффективность систем связи и передачи данных (ССиПД), являющихся неотъемлемой составляющей современных систем практически в любой области науки и техники, во многом зависит от стабильности частоты формируемых сигналов. Формируемые в ССиПД сигналы могут рассматриваться как процессы, частота которых изменяется под действием совокупности внешних воздействий. Изменение частоты сигналов приводит к уменьшению отношения «сигнал/шум» (ОСШ) и, соответственно, ухудшению характеристик ССиПД, таких как вероятность битовой ошибки, пропускная способность. Описание таких изменений частоты сигналов наиболее удобно рассматривать как случайные процессы, аппарат которых находит широкое применение при построении математических моделей, описывающих функционирование систем и устройств в различных областях науки и техники. При этом во многих случаях характеристики случайного процесса, такие как закон распределения, математическое ожидание и дисперсия, могут являться неизвестными или известными с погрешностями, не позволяющими получить приемлемые по точности оценки параметров сигналов. В статье предлагается алгоритм решения задачи по определению характеристик случайного процесса (частоты сигнала) на основе набора отсчетов его частоты, позволяющих определить выборочное среднее, выборочную дисперсию и закон распределения отклонений частоты в генеральной совокупности. Основой данного алгоритма является сравнение измеренных на некотором временном интервале значений наблюдаемого случайного процесса с набором того же количества случайных значений, сформированных на основе модельных законов распределения. В качестве модельных законов распределения могут рассматриваться законы распределения, принятые на основе математических моделей этих систем и устройств или соответствующие аналогичным системам и устройствам. В качестве математического ожидания и дисперсии при формировании набора случайных значений для принятого модельного закона распределения принимаются выборочные среднее значение и дисперсия, полученные по результатам измерений наблюдаемого случайного процесса. Особенность алгоритма заключается в проведении сравнения упорядоченных по возрастанию или убыванию измеренных значений наблюдаемого случайного процесса и сформированных наборов значений в соответствии с принятыми моделями законов распределения. Приведены результаты математического моделирования, иллюстрирующие применение данного алгоритма.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





