Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Прямые мультипликативные методы для разреженных матриц. Линейное программирование
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 143-165Просмотров за год: 10. Цитирований: 2 (РИНЦ).Мультипликативные методы для разреженных матриц являются наиболее приспособленными для снижения трудоемкости операций решения систем линейных уравнений, выполняемых на каждой итерации симплекс-метода. Матрицы ограничений в этих задачах слабо заполнены ненулевыми элементами, что позволяет получать мультипликаторы, главные столбцы которых также разрежены, а операция умножения вектора на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора. Кроме того, при переходе к смежному базису мультипликативное представление достаточно легко корректируется. Для повышения эффективности таких методов требуется уменьшение заполненности мультипликативного представления ненулевыми элементами. Однако на каждой итерации алгоритма к последовательности мультипликаторов добавляется еще один. А трудоемкость умножения, которая линейно зависит от длины последовательности, растет. Поэтому требуется выполнять время от времени перевычисление обратной матрицы, получая ее из единичной. Однако в целом проблема не решается. Кроме того, набор мультипликаторов представляет собой последовательность структур, причем размер этой последовательности неудобно велик и точно неизвестен. Мультипликативные методы не учитывают фактора высокой степени разреженности исходных матриц и ограничения-равенства, требуют определения первоначального базисного допустимого решения задачи и, как следствие, не допускают сокращения размерности задачи линейного программирования и регулярной процедуры сжатия — уменьшения размерности мультипликаторов и исключения ненулевых элементов из всех главных столбцов мультипликаторов, полученных на предыдущих итерациях. Таким образом, разработка численных методов решения задач линейного программирования, позволяющих преодолеть или существенно ослабить недостатки схем реализации симплекс-метода, относится к актуальным проблемам вычислительной математики.
В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения задач линейного программирования, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в уменьшении размерности и минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.
В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации предлагается положить модификацию прямого мультипликативного метода линейного программирования путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.
-
Нижние оценки для методов типа условного градиента для задач минимизации гладких сильно выпуклых функций
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 213-223В данной работе рассматриваются методы условного градиента для оптимизации сильно выпуклых функций. Это методы, использующие линейный минимизационный оракул, то есть умеющие вычислять решение задачи
$$ \text{Argmin}_{x\in X}{\langle p,\,x \rangle} $$
для заданного вектора $p \in \mathbb{R}^n$. Существует целый ряд методов условного градиента, имеющих линейную скорость сходимости в сильно выпуклом случае. Однако во всех этих методах в оценку скорости сходимости входит размерность задачи, которая в современных приложениях может быть очень большой. В данной работе доказывается, что в сильно выпуклом случае скорость сходимости методов условного градиента в лучшем случае зависит от размерности задачи $n$ как $\widetilde{\Omega}\left(\!\sqrt{n}\right)$. Таким образом, методы условного градиента могут оказаться неэффективными для решения сильно выпуклых оптимизационных задач больших размерностей.
Отдельно рассматривается приложение методов условного градиента к задачам минимизации квадратичной формы. Уже была доказана эффективность метода Франк – Вульфа для решения задачи квадратичной оптимизации в выпуклом случае на симплексе (PageRank). Данная работа показывает, что использование методов условного градиента для минимизации квадратичной формы в сильно выпуклом случае малоэффективно из-за наличия размерности в оценке скорости сходимости этих методов. Поэтому рассматривается метод рестартов условного градиента (Shrinking Conditional Gradient). Его отличие от методов условного градиента заключается в том, что в нем используется модифицированный линейный минимизационный оракул, который для заданного вектора $p \in \mathbb{R}^n$ вычисляет решение задачи $$ \text{Argmin}\{\langle p, \,x \rangle\colon x\in X, \;\|x-x_0^{}\| \leqslant R \}. $$ В оценку скорости сходимости такого алгоритма размерность уже не входит. С помощью рестартов метода условного градиента получена сложность (число арифметических операций) минимизации квадратичной формы на $\infty$-шаре. Полученная оценка работы метода сравнима со сложностью градиентного метода.
Ключевые слова: метод Франк – Вульфа, рестарты. -
Оценка числа итераций для сильно полиномиальных алгоритмов линейного программирования
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 249-285Рассматривается прямой алгоритм решения задачи линейного программирования (ЛП), заданной в каноническом виде. Алгоритм состоит из двух последовательных этапов, на которых прямым методом решаются приведенные ниже задачи ЛП: невырожденная вспомогательная задача (на первом этапе) и некоторая задача, равносильная исходной (на втором). В основе построения вспомогательной задачи лежит мультипликативный вариант метода исключения Гаусса, в самой структуре которого заложены возможности: идентификации несовместности и линейной зависимости ограничений; идентификации переменных, оптимальные значения которых заведомо равны нулю; фактического исключения прямых переменных и сокращения размерности пространства, в котором определено решение исходной задачи. В процессе фактического исключения переменных алгоритм генерирует последовательность мультипликаторов, главные строки которых формируют матрицу ограничений вспомогательной задачи, причем возможность минимизация заполнения главных строк мультипликаторов заложена в самой структуре прямых методов. При этом отсутствует необходимость передачи информации (базис, план и оптимальное значение целевой функции) на второй этап алгоритма и применения одного из способов устранения зацикливания для гарантии конечной сходимости.
Представлены два варианта алгоритма решения вспомогательной задачи в сопряженной канонической форме. Первый основан на ее решении прямым алгоритмом в терминах симплекс-метода, а второй — на решении задачи, двойственной к ней, симплекс-методом. Показано, что оба варианта алгоритма для одинаковых исходных данных (входов) генерируют одинаковую последовательность точек: базисное решение и текущее двойственное решение вектора оценок строк. Отсюда сделан вывод, что прямой алгоритм — это алгоритм типа симплекс-метода. Также показано, что сравнение вычислительных схем приводит к выводу, что прямой алгоритм позволяет уменьшить по кубическому закону число арифметических операций, необходимых для решения вспомогательной задачи, по сравнению с симплекс-методом. Приводится оценка числа итераций.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"