Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'автономность':
Найдено статей: 27
  1. Хавинсон М.Ю., Кулаков М.П.
    Математическое моделирование динамики численности разновозрастных занятых в экономике региона
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454

    В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.

    Просмотров за год: 4. Цитирований: 15 (РИНЦ).
  2. Ревуцкая О.Л., Неверова Г.П., Фрисман Е.Я.
    Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961

    В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.

  3. Хавинсон М.Ю., Колобов А.Н.
    Моделирование динамики численности занятого населения в отраслях экономики: агент-ориентированный подход
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 919-937

    Статья посвящена моделированию динамики численности занятого населения по отраслям экономики как на национальном, так и на региональном уровне. Отсутствие целевого распределения работников в рыночной экономике требует исследования системных процессов на рынке труда, приводящих к различной динамике численности занятых в отраслях экономики. В этом случае значимыми становятся личные стратегии выбора трудовой деятельности экономическими агентами. Наличие различных стратегий приводит к появлению страт на рынке труда с динамично изменяющейся численностью занятых, неравномерно распределенной между отраслями экономики. В результате этого могут наблюдаться нелинейные колебания численности занятого населения, для исследования которых релевантен инструментарий агент-ориентированного моделирования. В статье на примере Еврейской автономной области рассмотрены синхронные и противофазные колебания численности занятых по видам экономической деятельности, обнаруженные во временных рядах статистических данных для 2008–2016 гг. Показано, что такие колебания наблюдаются по возрастным группам работников. Ввиду этого выдвинута гипотеза о том, что агент на рынке труда при выборе места работы руководствуется стратегией, характерной для его возрастной группы, что в итоге прямо влияет на распределение численности занятых различных когорт и общую численность занятых в отраслях экономики. При этом стратегия определяется исходя из социально-экономических характеристик отраслей (различного уровня оплаты труда, условий труда, престижа профессии). Для проверки гипотезы построена базовая агент-ориентированная модель трехотраслевой экономики, в которой учтены различные стратегии экономических агентов, включающие выбор наибольшей заработной платы, наиболее высокого престижа профессии и наилучших условий труда. В результате численных экспериментов показано, что наличие различных стратегий выбора отрасли в совокупности с возрастными предпочтениями работодателей внутри отрасли приводит к периодическим и сложным режимам динамики численности разновозрастных занятых. Такие возрастные предпочтения могут быть вызваны, например, требованием работодателя к наличию трудового стажа и образования. Также сущетвенные изменения возрастной структуры занятого населения могут возникнуть вследствие миграции.

    Просмотров за год: 34.
  4. Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.

  5. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

  6. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

  7. Ха Д.Т., Цибулин В.Г.
    Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466

    Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.