Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'β)</i>-производная':
Найдено статей: 86
  1. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

  2. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

  3. Юдин И.П., Панасик В.А., Перепелкин Е.Е., Питерский А.Н., Полякова Р.В.
    Особенности численного моделирования поля модифицированного магнита спектрометра
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 93-105

    В данной работе представлены результаты численного моделирования распределения магнитного поля некоторых модификаций спектрометрического магнита СП-40, используемого в экспериментальной установке НИС ОИЯИ. Основной особенностью такого магнита является прямоугольная апертура, следовательно, и область, в которой решается краевая задача, имеет всюду гладкую границу, за исключением угловой области ферромагнетика. В таких случаях решение задачи или производные решения могут иметь особенность. Изучено поведение магнитного поля в окрестности угловой области ферромагнетика и численным путем выбрана конфигурация магнита, для которой ширина области однородности (т. е. с $\Delta B/B < 1\,\%$) магнитного поля увеличилась с 0.5 м до 1.0 м, т. е. в два раза.

    Цитирований: 1 (РИНЦ).
  4. Голубев В.И., Хохлов Н.И.
    Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
    Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240

    Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.

    Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.

    В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.

    Просмотров за год: 11. Цитирований: 4 (РИНЦ).
  5. Ильичев В.Г., Дашкевич Л.В.
    Оптимальный промысел и эволюция путей миграции рыбных популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 879-893

    Представлена новая дискретная эколого-эволюционная математическая модель, в которой реализованы механизмы поиска эволюционно устойчивых маршрутов миграции рыбных популяций. Предложенные адаптивные конструкции имеют малую размерность и поэтому обладают высоким быстродействием, что позволяет проводить компьютерные расчеты на длительный срок за приемлемое машинное время. При исследовании устойчивости использованы как геометрические подходы нелинейного анализа, так и компьютерные асимптотические методы. Динамика миграции рыбной популяции описывается некоторой марковской матрицей, которая может изменяться в процессе эволюции. В семействе марковских матриц (фиксированной размерности) выделены базисные матрицы, которые использованы для генерации маршрутов миграции мутантов. В результате конкуренции исходной популяции с мутантами выявляется перспективное направление эволюции пространственного поведения рыбы при заданном промысле и кормовой базе. Данная модель была применена к решению проблемы оптимального вылова на долгосрочную перспективу, при условии, что водоем разделен на две части, у каждой из которых свой собственник. При решении оптимизационных задач используется динамическое программирование, основанное на построении функции Беллмана. Обнаружена парадоксальная стратегия заманивания, когда один из участников промысла на своей акватории временно сокращает вылов. В этом случае мигрирующая рыба больше времени проводит в этом районе (при условии равной кормовой базы). Такой маршрут эволюционно закрепляется и не изменяется даже после возобновления промысла в этом районе. Второй участник промысла может восстановить статус-кво, применив заманивание на своей части акватории. Возникает бесконечная последовательность заманиваний — своеобразная игра в поддавки. Введено новое эффективное понятие — внутренняя цена рыбной популяции, зависящая от района водоема. По сути, эти цены представляют собой частные производные функции Беллмана и могут быть использованы в качестве налога на выловленную рыбу. В этом случае проблема многолетнего промысла сводится к решению задачи одногодичной оптимизации.

  6. Бессонов Н.М., Бочаров Г.А., Бушнита А., Вольперт В.А.
    Гибридные модели в биомедицинских приложениях
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 287-309

    В статье представлен обзор недавних работ по гибридным дискретно-непрерывным моделям в динамике клеточных популяций. В этих моделях, широко используемых в биологическом моделировании, клетки рассматриваются как отдельные объекты, которые могут делиться, умирать, дифференцироваться и двигаться под воздействием внешних сил. В простейшем представлении клетки рассматриваются как мягкие сферы, их движение описывается вторым законом Ньютона для их центров. В более полном представлении могут учитываться геометрия и структура клеток. Судьба клеток определяется концентрациями внутриклеточных веществ и различных веществ во внеклеточном матриксе, таких как питательные вещества, гормоны, факторы роста. Внутриклеточные регуляторные сети описываются обыкновенными дифференциальными уравнениями, а внеклеточные концентрации — уравнениями в частных производных. Мы проиллюстрируем применение этого подхода некоторыми примерами, в том числе бактериальными филаметами и ростом раковойоп ухоли. Далее будут приведены более детальные исследования эритропоэза и иммунного ответа. Эритроциты произодятся в костном мозге в небольших структурах, называемых эритробластными островками. Каждыйо стровок образован центральным макрофагом, окруженным эритроидными предшественниками на разных стадиях зрелости. Их выбор между самообновлением, дифференцировкойи апоптозом определяется регуляцией ERK/Fas и фактором роста, производимым макрофагами. Нормальное функционирование эритропоэза может быть нарушено развитием множественной миеломы, злокачественного заболевания крови, которое приводит к разрушению эритробластических островков и к развитию анемии. Последняя часть работы посвящена применению гибридных моделей для изучения иммунного ответа и развития вируснойинф екции. Представлена двухмасштабная модель, включающая лимфатическийу зел и другие ткани организма, включая кровеносную систему.

    Просмотров за год: 25.
  7. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

  8. Рамазанов Р.Р., Соколов П.А.
    Молекулярно-динамическое исследование комплексов ДНК-аптамера с АМФ и ГМФ
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1191-1203

    В данной работе при помощи метода молекулярной динамики проводится сравнительное исследование конформационной стабильности ДНК-аптамера к аденозиновым производным в свободном состоянии и в комплексе с молекулами АМФ и ГМФ. Показано, что в свободном состоянии структура внутренней петли шпильки ДНК-аптамера за счет особой упаковки гуанинов закрывает полость сайта связывания от внешних лигандов, при этомв озникает условие специфичного отбора молекул аденозинового производного в сравнении с гуанином. В дополнение к имеющимся в литературе выявлены новые факторы стабилизации комплекса АМФ и аптамера — водородные связи между О3’ атома рибозы лигандов с кислородом ближайшей фосфатной группы. Также показано, что гуанины, которые образуют водородные связи с АМФ внутри сайта связывания, дополнительно стабилизируются водородными связями с противолежащими по цепи фосфатными группами. Предложенная схема качественно соответствует экспериментальным данным, согласно которым аптамер в растворе обретает конформацию шпильки с формированием сайта связывания, при этом образованный сайт проявляет высокую специфичность при взаимодействии только с аденозиновыми производными.

  9. Грачев В.А., Найштут Ю.С.
    Релаксационные колебания и устойчивость тонких оболочек
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 807-820

    В работе изучаются возможности прогнозирования потери устойчивости тонких цилиндрических оболочек неразрушающими методами на стадии эксплуатации. Исследуются пологие оболочки, изготовленные из высокопрочных материалов. Для таких конструктивных решений характерны перемещения поверхностей, превосходящие толщины элементов. В рассматриваемых оболочках могут генерироваться релаксационные колебания значительной амплитуды даже при сравнительно невысоком уровне внутренних напряжений. Произведено упрощенное механико-математическое моделирование задачи о колебаниях цилиндрической оболочки, сводящее проблему к обыкновенному дифференциальному уравнению. При создании модели существенно использованы исследования многих авторов по изучению геометрии поверхности, образующейся после потери устойчивости. Нелинейное обыкновенное дифференциальное уравнение колеблющейся оболочки совпадает с хорошо изученным уравнением Дуффинга. Важно, что для тонких оболочек в уравнении Дуффинга появляется малый параметр перед второй производной по времени. Последнее обстоятельство дает возможность провести детальный анализ выведенного уравнения и описать релаксационные колебания — физическое явление, присущее только тонким высокопрочным оболочкам.

    Показано, что гармонические колебания оболочки вокруг положения равновесия и устойчивые релаксационные колебания определяются точкой бифуркации решений уравнения Дуффинга. Эта точка является первой в схеме Фейгенбаума по преобразованию устойчивых периодических движений в динамический хаос. Произведены вычисления амплитуды и периода релаксационных колебаний в зависимости от физических свойств и уровня внутренних напряжений в оболочке. Рассмотрены два случая нагружения: сжатие вдоль образующих и внешнее давление.

    Отмечено, что если внешние силы изменяются в течение времени по гармоническому закону, то периодическое колебание оболочки (нелинейный резонанс) состоит из отрезков медленного и скачкообразного движений. Этот факт, наряду со знанием амплитуды и частоты колеблющейся оболочки, позволяет предложить экспериментальную установку для прогноза потери устойчивости оболочки неразрушающим методом. В качестве критерия безопасности принято следующее требование: максимальные комбинации нагрузок не должны вызывать перемещения, превышающие заданные пределы. Получена формула, оценивающая запас устойчивости (коэффициент безопасности) конструкции по результатам экспериментальных измерений.

  10. При моделировании турбулентных течений неизбежно приходится сталкиваться с выбором между точностью и скоростью проведения расчетов. Так, DNS- и LES-модели позволяют проводить более точные расчеты, но являются более вычислительно затратными, чем RANS-модели. Поэтому сейчас RANS- модели являются наиболее часто используемыми при проведении практических расчетов. Но и расчеты с применением RANS-моделей могут быть значительно вычислительно затратными для задач со сложной геометрией или при проведении серийных расчетов по причине необходимости разрешения пристенного слоя. Существуют подходы, позволяющие значительно ускорить вычисления для RANS-моделей. Например, пристеночные функции или методы, основанные на декомпозиции расчетной области. Тем не менее они неизбежно теряют в точности за счет упрощения модели в пристенной области. Для того чтобы одновременно получить и вычислительно эффективную и более точную модель, может быть построена суррогатная модель на основании упрощенной модели и с использованием знаний о предыдущих расчетах, полученных более точной моделью, например из некоторых результатов серийных расчетов.

    В статье строится оператор перехода, позволяющий по результатам расчетов менее точной модели получить поле течения как при применении более точной модели. В данной работе результаты расчетов, полученные с помощью менее точной модели Спаларта–Аллмараса с применением пристенной декомпозиции, уточняются на основании расчетов схожих течений, полученных с помощью базовой модели Спаларта–Аллмараса с подробным разрешением пристенной области, с помощью методов машинного обучения. Оператор перехода от уточняемой модели к базовой строится локальным образом. То есть для уточнения результатов расчета в каждой точке расчетной области используются значения переменных пространства признаков (сами переменные поля и их производные) в этой точке. Для построения оператора используется алгоритм Random Forest. Эффективность и точность построенной суррогатной модели демонстрируется на примере двумерной задачи сверхзвукового турбулентного обтекания угла сжатия при различных числах Рейнольдса. Полученный оператор применяется к решению задач интерполяции и экстраполяции по числу Рейнольдса, также рассматривается топологический случай — интерполяция и экстраполяция по величине угла сжатия $\alpha$.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.