Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Равномерные вложения графа в метрические пространства
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 241-251Рассмотрена задача вложения бесконечного счетного графа в непрерывное метрическое пространство. Введено понятие равномерного вложения, при котором не возникает точек накопления на множестве образов вершин и образы ребер имеют ограниченную длину. Найдены необходимые и достаточные условия в терминах структуры графа для возможности равномерного вложения в пространства с метриками Эвклида и Лоренца. Доказано, что деревья с конечным ветвлением имеют равномерное вложение в пространство с метрикой модуля метрики Минковского.
Ключевые слова: метрическое пространство, бесконечный граф, факторграф, метрика Минковского, метрика Лоренца, метрика Эвклида.
Uniform graph embedding into metric spaces
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 241-251The task of embedding an infinity countable graph into continuous metric space is considered. The concept of uniform embedding having no accumulation point in a set of vertex images and having all graph edge images of a limited length is introduced. Necessary and sufficient conditions for possibility of uniform embedding into spaces with Euclid and Lorenz metrics are stated in terms of graph structure. It is proved that tree graphs with finite branching have uniform embedding into space with absolute Minkowski metric.
Keywords: metric space, infinite graph, factor graph, Minkowski metric, Lorenz metric, Euclid metric. -
Образ учителя. Десять лет спустя
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 789-811В работе обсуждаются основные научные идеи выдающегося специалиста по прикладной математике, теории самоорганизации и междисциплинарным подходам — Сергея Павловича Курдюмова (1928–2004). Рассмотрено развитие этих идей в последние десятилетия, формулируется ряд открытых вопросов синергетики, с которыми, вероятно, будет связано ее дальнейшее развитие. Статья представляет собой расширенный вариант доклада, сделанного на X Курдюмовских чтениях в Тверском государственном университете в 2015 году.
Ключевые слова: С. П. Курдюмов, Институт прикладной математики им. М. В. Келдыша РАН, научная школа, теория режимов с обострением, самоорганизация, синергетика, проблема времени, динамический хаос, самоорганизованная критичность, парадигма, управление рисками.
Image of the teacher. Ten years afterward
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 789-811Просмотров за год: 4.The work outlines the key ideas of Kurdyumov S.P., an outstanding specialist in applied mathematics, self-organization theory, transdisciplinary research. It considers the development of his scientific ideas in the last decade and formulates a set of open problems in synergetics which will probably stimulate the development of this approach. The article is an engaged version of the report made at Xth Kurdyumov readings held in Tver State University in 2015.
-
Задача интегральной геометрии с мероиндукцией
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 31-37Предлагается новая постановка задачи интегральной геометрии, в которой образ функции в каждой точке получается путем ее интегрирования по мере, зависящей от точки. Такую систему мер назовем мероиндукцией. Показано, что для класса мероиндукций, имеющих единичный атом в соответственной точке каждой меры и ограниченных на всем пространстве, существует устойчивая асимптотическая формула обращения. Это обобщает полученные ранее результаты для усреднений по системам измеримых разбиений и для весовых усреднений на графах.
Ключевые слова: интегральная геометрия, мера, пространство функций, линейные операторы, формулы обращения.
The task of integral geometry with measure induction
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 31-37A new statement of Integral Geometry problem where the image of function in each point is taken as an integral with respect to measure which depends on the point is suggested. Such Measure System is named Measure Induction. It is shown that an inversion formula exists for class of measures having a unit atom in corresponding
point and limited on whole space. Previously obtained results for average on systems of measurement dissections and for weight average on graphs are generalized. -
Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 13-25В работе развивается теория нового, так называемого двухпараметрического подхода к анализу и обработке случайных сигналов. Проведены математическое моделирование и сопоставление результатов решения задачи в условиях статистических моделей Гаусса и Райса. Дается обоснование применимости статистической модели Райса в условиях анализа огибающей измеряемого сигнала в задачах обработки данных и изображений. Развит и теоретически обоснован метод решения задачи шумоподавления и восстановления райсовского сигнала посредством одновременного вычисления двух статистических параметров — величины математического ожидания исходного сигнала и дисперсии шума — на основе принципа максимума правдоподобия. Проанализированы особенности функции правдоподобия для распределения Райса и вытекающие из них возможности оценки параметров сигнала и шума.
Ключевые слова: случайный сигнал, распределение Райса, распределение Гаусса, метод максимума правдоподобия, отношение сигнала к шуму.
Conditions of Rice statistical model applicability and estimation of the Rician signal’s parameters by maximum likelihood technique
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 13-25Просмотров за год: 2. Цитирований: 4 (РИНЦ).The paper develops a theory of a new so-called two-parametric approach to the random signals' analysis and processing. A mathematical simulation and the task solutions’ comparison have been implemented for the Gauss and Rice statistical models. The applicability of the Rice statistical model is substantiated for the tasks of data and images processing when the signal’s envelope is being analyzed. A technique is developed and theoretically substantiated for solving the task of the noise suppression and initial image reconstruction by means of joint calculation of both statistical parameters — an initial signal’s mean value and noise dispersion — based on the maximum likelihood method within the Rice distribution. The peculiarities of this distribution’s likelihood function and the following from them possibilities of the signal and noise estimation have been analyzed.
-
Сеточные высокопроизводительные вычисления в получении спутниковых изображний на примере фильтра Перона–Малик
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 399-406В данной работе рассматривается подход к эффективной обработке спутниковых изображений, который включает в себя два этапа. Первый этап заключается в распределении быстро взрастающего объема спутниковых данных, полученных через Грид-инфраструктуру. Второй этап включает в себя ускорение решения отдельных задач, относящихся к обработке изображений с помощью внедрения кодов, которые способствуют интенсивному использованию пространственно-временного параллелизма. Примером такого кода является обработка изображений с помощью итерационного фильтра Перона–Малик в рамках специального применения архитектуры аппаратного обеспечения ППВМ (FPGA).
Ключевые слова: фильтр Перона–Малик, обработка спутникового изображение, Грид, высокопроизводительные вычисления, ППВМ (ПЛИС), ЮНИТАР (UNOSAT).
Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 399-406Просмотров за год: 3.The present paper discusses an approach to the efficient satellite image processing which involves two steps. The first step assumes the distribution of the steadily increasing volume of satellite collected data through a Grid infrastructure. The second step assumes the acceleration of the solution of the individual tasks related to image processing by implementing execution codes which make heavy use of spatial and temporal parallelism. An instance of such execution code is the image processing by means of the iterative Perona–Malik filter within FPGA application specific hardware architecture.
-
Аналитическое решение и компьютерное моделирование задачи расчета параметров распределения Райса в предельных случаях большого и малого отношения сигнала к шуму
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 227-242В работе решается задача вычисления параметров случайного сигнала в условиях распределения Райса на основе принципа максимума правдоподобия в предельных случаях большого и малого значения отношения сигнала к шуму. Получены аналитические формулы для решения системы уравнений максимума правдоподобия для искомых параметров сигнала и шума как для однопараметрического приближения, когда рассчитывается только один параметр задачи — величина сигнала, в предположении априорной известности второго параметра — дисперсии шума, так и для двухпараметрической задачи, когда оба параметра априорно неизвестны. Непосредственное вычисление искомых параметров сигнала и шума по формулам позволяет избежать необходимости ресурсоемкого численного решения системы нелинейных уравнений и тем самым оптимизировать время компьютерной обработки сигналов и изображений. Представлены результаты компьютерного моделирования задачи, подтверждающие теоретические выводы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации.
Ключевые слова: функция плотности вероятности, распределение Райса, метод максимума правдоподобия, выборки измерений, отношение сигнала к шуму.
Analytical solution and computer simulation of the task of Rician distribution’s parameters in limiting cases of large and small values of signal-to-noise ratio
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 227-242Просмотров за год: 2.The paper provides a solution of a task of calculating the parameters of a Rician distributed signal on the basis of the maximum likelihood principle in limiting cases of large and small values of the signal-tonoise ratio. The analytical formulas are obtained for the solution of the maximum likelihood equations’ system for the required signal and noise parameters for both the one-parameter approximation, when only one parameter is being calculated on the assumption that the second one is known a-priori, and for the two-parameter task, when both parameters are a-priori unknown. The direct calculation of required signal and noise parameters by formulas allows escaping the necessity of time resource consuming numerical solving the nonlinear equations’ s system and thus optimizing the duration of computer processing of signals and images. There are presented the results of computer simulation of a task confirming the theoretical conclusions. The task is meaningful for the purposes of Rician data processing, in particular, magnetic-resonance visualization.
-
Теоретическое обоснование математических методов совместного оценивания параметров сигнала и шума при анализе райсовских данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 445-473В работе решается двухпараметрическая задача совместного расчета параметров сигнала и шума в условиях распределения Райса методами математической статистики: методом максимума правдоподобия и вариантами метода моментов. Рассматриваемые варианты метода моментов включают в себя совместный расчет сигнала и шума на основе измерений 2-го и 4-го моментов (ММ24) и на основе измерений 1-го и 2-го моментов (ММ12). В рамках каждого из рассматриваемых методов получены в явном виде системы уравнений для искомых параметров сигнала и шума. Важный математический результат проведенного исследования состоит в том, что решение системы двух нелинейных уравнений с двумя неизвестными — искомыми параметрами сигнала и шума — сведено к решению одного уравнения с одной неизвестной, что важно с точки зрения как теоретического исследования метода, так и его практического применения, позволяя существенно сократить необходимые для реализации метода вычислительные ресурсы. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации. В результате проведенного теоретического анализа получен важный практический вывод: решение двухпараметрической задачи не приводит к увеличению требуемых вычислительных ресурсов по сравнению с однопараметрическим приближением. Теоретические выводы подтверждаются результатами численного эксперимента.
Ключевые слова: функция плотности вероятности, распределение Райса, функция правдоподобия, метод максимума правдоподобия, метод моментов, отношение сигнала к шуму, дисперсия шума.
Theoretical substantiation of the mathematical techniques for joint signal and noise estimation at rician data analysis
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 445-473Просмотров за год: 2. Цитирований: 2 (РИНЦ).The paper provides a solution of the two-parameter task of joint signal and noise estimation at data analysis within the conditions of the Rice distribution by the techniques of mathematical statistics: the maximum likelihood method and the variants of the method of moments. The considered variants of the method of moments include the following techniques: the joint signal and noise estimation on the basis of measuring the 2-nd and the 4-th moments (MM24) and on the basis of measuring the 1-st and the 2-nd moments (MM12). For each of the elaborated methods the explicit equations’ systems have been obtained for required parameters of the signal and noise. An important mathematical result of the investigation consists in the fact that the solution of the system of two nonlinear equations with two variables — the sought for signal and noise parameters — has been reduced to the solution of just one equation with one unknown quantity what is important from the view point of both the theoretical investigation of the proposed technique and its practical application, providing the possibility of essential decreasing the calculating resources required for the technique’s realization. The implemented theoretical analysis has resulted in an important practical conclusion: solving the two-parameter task does not lead to the increase of required numerical resources if compared with the one-parameter approximation. The task is meaningful for the purposes of the rician data processing, in particular — the image processing in the systems of magnetic-resonance visualization. The theoretical conclusions have been confirmed by the results of the numerical experiment.
-
Lidar and camera data fusion in self-driving cars
Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1239-1253Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.
Ключевые слова: autonomous vehicles, self-driving cars, sensors fusion, Lidar, camera, late fusion, point cloud, images, KITTI dataset, hardware verification.
Lidar and camera data fusion in self-driving cars
Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1239-1253Sensor fusion is one of the important solutions for the perception problem in self-driving cars, where the main aim is to enhance the perception of the system without losing real-time performance. Therefore, it is a trade-off problem and its often observed that most models that have a high environment perception cannot perform in a real-time manner. Our article is concerned with camera and Lidar data fusion for better environment perception in self-driving cars, considering 3 main classes which are cars, cyclists and pedestrians. We fuse output from the 3D detector model that takes its input from Lidar as well as the output from the 2D detector that take its input from the camera, to give better perception output than any of them separately, ensuring that it is able to work in real-time. We addressed our problem using a 3D detector model (Complex-Yolov3) and a 2D detector model (Yolo-v3), wherein we applied the image-based fusion method that could make a fusion between Lidar and camera information with a fast and efficient late fusion technique that is discussed in detail in this article. We used the mean average precision (mAP) metric in order to evaluate our object detection model and to compare the proposed approach with them as well. At the end, we showed the results on the KITTI dataset as well as our real hardware setup, which consists of Lidar velodyne 16 and Leopard USB cameras. We used Python to develop our algorithm and then validated it on the KITTI dataset. We used ros2 along with C++ to verify the algorithm on our dataset obtained from our hardware configurations which proved that our proposed approach could give good results and work efficiently in practical situations in a real-time manner.
-
Удаление шума из изображений с использованием предлагаемого алгоритма трехчленного сопряженного градиента
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 841-853Алгоритмы сопряженных градиентов представляют собой важный класс алгоритмов безусловной оптимизации с хорошей локальной и глобальной сходимостью и скромными требованиями к памяти. Они занимают промежуточное место между методом наискорейшего спуска и методом Ньютона, поскольку требуют вычисленияи хранения только первых производных и как правило быстрее методов наискорейшего спуска. В данном исследовании рассмотрен новый подход в задаче восстановления изображений. Он наследует одновременно методу сопряженных градиентов Флетчера – Ривза (FR) и трехкомпонентному методу сопряженных градиентов (TTCG), и поэтому назван авторами гибридным трехкомпонентным методом сопряженных градиентов (HYCGM). Новое направление спуска в нем учитывает текущее направления градиента, предыдущее направления спуска и градиент из предыдущей итерации. Показано, что новый алгоритм обладает свойствами глобальной сходимости и монотонности при использовании неточного линейного поиска типа Вулфа при некоторых стандартных предположениях. Для подтверждения эффективности предложенного алгоритма приводятся результаты численных экспериментов предложенного метода в сравнении с классическим методом Флетчера – Ривза (FR) и трехкомпонентным методом Флетчера – Ривза (TTFR).
Noise removal from images using the proposed three-term conjugate gradient algorithm
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 841-853Conjugate gradient algorithms represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and simple memory requirements. These algorithms have advantages that place them between the steep regression method and Newton’s algorithm because they require calculating the first derivatives only and do not require calculating and storing the second derivatives that Newton’s algorithm needs. They are also faster than the steep descent algorithm, meaning that they have overcome the slow convergence of this algorithm, and it does not need to calculate the Hessian matrix or any of its approximations, so it is widely used in optimization applications. This study proposes a novel method for image restoration by fusing the convex combination method with the hybrid (CG) method to create a hybrid three-term (CG) algorithm. Combining the features of both the Fletcher and Revees (FR) conjugate parameter and the hybrid Fletcher and Revees (FR), we get the search direction conjugate parameter. The search direction is the result of concatenating the gradient direction, the previous search direction, and the gradient from the previous iteration. We have shown that the new algorithm possesses the properties of global convergence and descent when using an inexact search line, relying on the standard Wolfe conditions, and using some assumptions. To guarantee the effectiveness of the suggested algorithm and processing image restoration problems. The numerical results of the new algorithm show high efficiency and accuracy in image restoration and speed of convergence when used in image restoration problems compared to Fletcher and Revees (FR) and three-term Fletcher and Revees (TTFR).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"