Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'самоорганизация':
Найдено статей: 11
  1. Малинецкий Г.Г.
    Теория самоорганизации. На пороге IV парадигмы
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 315-336

    В работе представлены ключевые проблемы теории самоорганизации или синергетики, а также прогноз ее развития на ближайшие десятилетия. Показано, что будущее этого междисциплинарного подхода, вероятно, определит создание и становление сетевой парадигмы. Рассмотрены постановки нескольких фундаментальных научных и принципиальных технологических задач, а также конкретные результаты, приводящие к этим выводам.

    Просмотров за год: 9. Цитирований: 19 (РИНЦ).
  2. Малинецкий Г.Г.
    Образ учителя. Десять лет спустя
    Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 789-811

    В работе обсуждаются основные научные идеи выдающегося специалиста по прикладной математике, теории самоорганизации и междисциплинарным подходам — Сергея Павловича Курдюмова (1928–2004). Рассмотрено развитие этих идей в последние десятилетия, формулируется ряд открытых вопросов синергетики, с которыми, вероятно, будет связано ее дальнейшее развитие. Статья представляет собой расширенный вариант доклада, сделанного на X Курдюмовских чтениях в Тверском государственном университете в 2015 году.

    Просмотров за год: 4.
  3. Профессору Дмитрию Сергеевичу Чернавскому — 90 лет
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 3-8
    Просмотров за год: 28.
  4. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 357-359
    Просмотров за год: 3.
  5. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 5-7
  6. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  7. Малков С.Ю.
    Моделирование закономерностей мировой динамики
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 419-432

    В статье проведен анализ исторического процесса с использованием методов синергетики (науки о нелинейных развивающихся системах в природе и обществе), развитых в работах Д. С. Чернавского применительно к экономическим и социальным системам. Показано, что социальная самоорганизация в зависимости от условий приводит к формированию как обществ с сильной внутренней конкуренцией (Y-структуры), так и обществ кооперативного типа (Х-структуры). Y-структуры характерны для стран Запада, Х-структуры характерны для стран Востока. Показано, что в XIX и XX веках имело место ускоренное формирование и усиление Y-структур. Однако в настоящее время мировая система вошла в период серьезных структурных перемен в экономической, политической, идеологической сферах: доминирование Y-структур заканчивается. Рассмотрены возможные пути дальнейшего развития мировой системы, связанные с изменением режимов самоорганизации и ограничением внутренней конкуренции. Этот переход будет длительным и сложным. В этих условиях объективно будет возрастать ценность цивилизационного опыта России, на основе которого в ней была сформирована социальная система комбинированного типа. Показано, что в конечном итоге неизбежен переход от нынешнего доминирования Y-структур к абсолютно новой глобальной системе, устойчивость которой будет основана на новой идеологии, новой духовности (то есть новой «условной информации», по Д. С. Чернавскому), делающей разворот от принципов конкуренции к принципам сотрудничества.

    Просмотров за год: 17.
  8. Красняков И.В., Брацун Д.А., Письмен Л.М.
    Математическое моделирование роста карциномы при динамическом изменении фенотипа клеток
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 879-902

    В работе предлагается двумерная хемомеханическая модель роста инвазивной карциномы в ткани эпителия. Каждая клетка ткани представляет собой эластичный многоугольник, изменяющий свою форму и размеры под действием сил давления со стороны ткани. Средние размер и форма клеток были откалиброваны на основе экспериментальных данных. Модель позволяет описывать динамические деформации в ткани эпителия как коллективную эволюцию клеток, взаимодействующих посредством обмена механическими и химическими сигналами. Общее направление роста опухоли задается линейным градиентом концентрации питательного элемента. Рост и деформация ткани осуществляются за счет механизмов деления и интеркаляции клеток. В модели предполагается, что карцинома представляет собой гетерогенное образование, составленное из клеток с разным фенотипом, которые выполняют в опухоли различные функции. Основным параметром, определяющим фенотип клетки, является степень ее адгезии к примыкающей ткани. Выделено три основных фенотипа раковых клеток: эпителиальный (Э) фенотип представлен внутренними клетками опухоли, мезенхимальный (М) фенотип представлен одиночными клетками, промежуточный фенотип представлен фронтальными клетками опухоли. При этом в модели предполагается, что фенотип каждой клетки при определенных условиях может динамически меняться за счет эпителиально-мезенхимального (ЭМ) и обратного к нему (МЭ) переходов. Для здоровых клеток выделен основной Э-фенотип, который представлен обычными клетками с сильной адгезией друг к другу. Предполагается, что здоровые клетки, которые примыкают к опухоли, под воздействием последней испытывают вынужденный ЭМ-переход и образуют М-фенотип здоровых клеток. Численное моделирование показало, что в зависимости от значений управляющих параметров, а также комбинации возможных фенотипов здоровых и раковых клеток эволюция опухоли может приводить к разнообразным структурам, отражающим самоорганизацию клеток опухоли. Проводится сравнение структур, полученных в численном эксперименте, с морфологическими структурами, ранее выявленными в клинических исследованиях карциномы молочной железы: трабекулярной, солидной, тубулярной и альвеолярной структурами, а также дискретными клетками с амебоидным поведением. Обсуждается возможный сценарий морфогенеза и типа инвазивного поведения для каждой структуры. Описан процесс метастазирования, при котором одиночная раковая клетка амебоидного фенотипа, перемещающаяся за счет интеркаляций в ткани здорового эпителия, делится и испытывает МЭ-переход с появлением вторичной опухоли.

    Просмотров за год: 46.
  9. Куракин П.В.
    Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178

    В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.

    Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.

    Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.

    Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.

    При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.

  10. Зенюк Д.А., Малинецкий Г.Г., Фаллер Д.С.
    Имитационная модель коррупции в иерархических системах
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 321-329

    Предложена имитационная модель коррупционного поведения в иерархических системах, учитывающая индивидуальные стратегии отдельных элементов и позволяющая описывать коллективное поведение достаточно больших групп. Были рассмотрены зависимости различных характеристик системы, таких как уровень коррумпированности и доля коррупционеров в иерархии, от управляющих параметров. Численный анализ позволил исследовать эффективность различных антикоррупционных стратегий.

    Просмотров за год: 8. Цитирований: 11 (РИНЦ).
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.