Равномерные вложения графа в метрические пространства

Рассмотрена задача вложения бесконечного счетного графа в непрерывное метрическое пространство. Введено понятие равномерного вложения, при котором не возникает точек накопления на множестве образов вершин и образы ребер имеют ограниченную длину. Найдены необходимые и достаточные условия в терминах структуры графа для возможности равномерного вложения в пространства с метриками Эвклида и Лоренца. Доказано, что деревья с конечным ветвлением имеют равномерное вложение в пространство с метрикой модуля метрики Минковского.

Ключевые слова: метрическое пространство, бесконечный граф, факторграф, метрика Минковского, метрика Лоренца, метрика Эвклида
Цитата: Коганов А.В. Равномерные вложения графа в метрические пространства // Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 241-251
Citation in English: Koganov A.V. Uniform graph embedding into metric spaces // Computer Research and Modeling, 2012, vol. 4, no. 2, pp. 241-251
Creative Commons License
Статья доступна по лицензии Creative Commons Attribution-NoDerivs 3.0 Unported License.

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus