Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'variance':
Найдено статей: 12
  1. Томинин Я.Д., Томинин В.Д., Бородич Е.Д., Ковалев Д.А., Двуреченский П.Е., Гасников А.В., Чуканов С.В.
    Об ускоренных методах для седловых задач с композитной структурой
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 433-467

    В данной работе рассматриваются сильно-выпукло сильно-вогнутые не билинейные седловые задачи с разными числами обусловленности по прямым и двойственным переменным. Во-первых, мы рассматриваем задачи с гладкими композитами, один из которых имеет структуру с конечной суммой. Для этой задачи мы предлагаем алгоритм уменьшения дисперсии с оценками сложности, превосходящими существующие ограничения в литературе. Во-вторых, мы рассматриваем седловые задачи конечной суммы с композитами и предлагаем несколько алгоритмов в зависимости от свойств составных членов. Когда составные члены являются гладкими, мы получаем лучшие оценки сложности, чем в литературе, включая оценки недавно предложенных почти оптимальных алгоритмов, которые не учитывают составную структуру задачи. Кроме того, наши алгоритмы позволяют разделить сложность, т. е. оценить для каждой функции в задаче количество вызовов оракула, достаточное для достижения заданной точности. Это важно, так как разные функции могут иметь разную арифметическую сложность оракула, а дорогие оракулы желательно вызывать реже, чем дешевые. Ключевым моментом во всех этих результатах является наша общая схема для седловых задач, которая может представлять самостоятельный интерес. Эта структура, в свою очередь, основана на предложенном нами ускоренном мета-алгоритме для композитной оптимизации с вероятностными неточными оракулами и вероятностной неточностью в проксимальном отображении, которые также могут представлять самостоятельный интерес.

    Tomonin Y.D., Tominin V.D., Borodich E.D., Kovalev D.A., Dvurechensky P.E., Gasnikov A.V., Chukanov S.V.
    On Accelerated Methods for Saddle-Point Problems with Composite Structure
    Computer Research and Modeling, 2023, v. 15, no. 2, pp. 433-467

    We consider strongly-convex-strongly-concave saddle-point problems with general non-bilinear objective and different condition numbers with respect to the primal and dual variables. First, we consider such problems with smooth composite terms, one of which has finite-sum structure. For this setting we propose a variance reduction algorithm with complexity estimates superior to the existing bounds in the literature. Second, we consider finite-sum saddle-point problems with composite terms and propose several algorithms depending on the properties of the composite terms. When the composite terms are smooth we obtain better complexity bounds than the ones in the literature, including the bounds of a recently proposed nearly-optimal algorithms which do not consider the composite structure of the problem. If the composite terms are prox-friendly, we propose a variance reduction algorithm that, on the one hand, is accelerated compared to existing variance reduction algorithms and, on the other hand, provides in the composite setting similar complexity bounds to the nearly-optimal algorithm which is designed for noncomposite setting. Besides, our algorithms allow one to separate the complexity bounds, i. e. estimate, for each part of the objective separately, the number of oracle calls that is sufficient to achieve a given accuracy. This is important since different parts can have different arithmetic complexity of the oracle, and it is desired to call expensive oracles less often than cheap oracles. The key thing to all these results is our general framework for saddle-point problems, which may be of independent interest. This framework, in turn is based on our proposed Accelerated Meta-Algorithm for composite optimization with probabilistic inexact oracles and probabilistic inexactness in the proximal mapping, which may be of independent interest as well.

  2. Никулин В.Н., Одинцова А.С.
    Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874

    Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.

    Nikulin V.N., Odintsova A.S.
    Statistically fair price for the European call options according to the discreet mean/variance model
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874

    We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as  risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.

    Просмотров за год: 1.
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.