Текущий выпуск Номер 3, 2025 Том 17

Все выпуски

Результаты поиска по 'response function':
Найдено статей: 33
  1. Ильин О.В.
    Граничные условия для решеточных уравнений Больцмана в приложениях к задачам гемодинамики
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 865-882

    Рассматривается одномерная трехскоростная кинетическая решеточная модель уравнения Больцмана, которая в рамках кинетической теории описывает распространение и взаимодействие частиц трех типов. Данная модель представляет собой разностную схему второго порядка для уравнений гидродинамики. Ранее было показано, что одномерная кинетическая решеточная модель уравнения Больцмана с внешней силой в пределе малых длин свободного пробега также эквивалентна одномерным уравнениям гемодинамики для эластичных сосудов, эквивалентность можно установить, используя разложение Чепмена – Энскога. Внешняя сила в модели отвечает за возможность регулировки функциональной зависимости между площадью просвета сосуда и приложенного к стенке рассматриваемого сосуда давления. Таким образом, меняя форму внешней силы, можно моделировать практически произвольные эластичные свойства стенок сосудов. В настоящей работе рассмотрены постановки физиологически интересных граничных условий для решеточных уравнений Больцмана в приложениях к задачам течения крови в сети эластичных сосудов. Разобраны следующие граничные условия: для давления и потока крови на входе сосудистой сети, условия для давления и потоков крови в точке бифуркации сосудов, условия отражения (соответствуют полной окклюзии сосуда) и поглощения волн на концах сосудов (эти условия соответствуют прохождению волны без искажений), а также условия типа RCR, представляющие собой схему, аналогичную электрическим цепям и состоящую из двух резисторов (соответствующих импедансу сосуда, на конце которого ставятся граничные условия, а также силам трения крови в микроциркуляторном русле) и одного конденсатора (описывающего эластичные свойства артериол). Проведено численное моделирование, рассмотрена задача о распространении крови в сети из трех сосудов, на входе сети ставятся условияна входящий поток крови, на концах сети ставятсяу словия типа RCR. Решения сравниваются с эталонными, в качестве которых выступают результаты численного счета на основе разностной схемы Маккормака второго порядка (без вязких членов), показано, что оба подхода дают практически идентичные результаты.

    Ilyin O.V.
    Boundary conditions for lattice Boltzmann equations in applications to hemodynamics
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 865-882

    We consider a one-dimensional three velocity kinetic lattice Boltzmann model, which represents a secondorder difference scheme for hydrodynamic equations. In the framework of kinetic theory this system describes the propagation and interaction of three types of particles. It has been shown previously that the lattice Boltzmann model with external virtual force is equivalent at the hydrodynamic limit to the one-dimensional hemodynamic equations for elastic vessels, this equivalence can be achieved with use of the Chapman – Enskog expansion. The external force in the model is responsible for the ability to adjust the functional dependence between the lumen area of the vessel and the pressure applied to the wall of the vessel under consideration. Thus, the form of the external force allows to model various elastic properties of the vessels. In the present paper the physiological boundary conditions are considered at the inlets and outlets of the arterial network in terms of the lattice Boltzmann variables. We consider the following boundary conditions: for pressure and blood flow at the inlet of the vascular network, boundary conditions for pressure and blood flow for the vessel bifurcations, wave reflection conditions (correspond to complete occlusion of the vessel) and wave absorption at the ends of the vessels (these conditions correspond to the passage of the wave without distortion), as well as RCR-type conditions, which are similar to electrical circuits and consist of two resistors (corresponding to the impedance of the vessel, at the end of which the boundary conditions are set and the friction forces in microcirculatory bed) and one capacitor (describing the elastic properties of arterioles). The numerical simulations were performed: the propagation of blood in a network of three vessels was considered, the boundary conditions for the blood flow were set at the entrance of the network, RCR boundary conditions were stated at the ends of the network. The solutions to lattice Boltzmann model are compared with the benchmark solutions (based on numerical calculations for second-order McCormack difference scheme without viscous terms), it is shown that the both approaches give very similar results.

  2. Алмасри А., Цибулин В.Г.
    Анализ динамической системы «жертва – хищник – суперхищник»: семейство равновесий и его разрушение
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1601-1615

    В работе исследуется динамика конечномерной модели, описывающей взаимодействие трех популяций: жертвы $x(t)$, потребляющего ее хищника $y(t)$ и суперхищника $z(t)$, питающегося обоими видами. Математически задача записывается в виде системы нелинейных дифференциальных уравнений первого порядка с правой частью $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, где $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) — положительные коэффициенты. Рассматриваемая модель относится к классу кoсимметричных динамических систем при функциональном отклике Лотки – Вольтерры $g=x$, $f=yz$ и дополнительных условиях на параметры: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. В этом случае формируется семейство равновесий в виде прямой в фазовом пространстве. Проанализирована устойчивость равновесий семейства и изолированных равновесий, построены карты существования стационарных решений и предельных циклов. Изучено разрушение семейства при нарушении условий косимметрии и использовании моделей Хoллинга $g(x)=\frac x{1+b_1^{}x}$ и Беддингтона–ДеАнгелиса $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. Для этого применяется аппарат теории косимметрии В.И. Юдовича, включающий вычисление косимметрических дефектов и селективных функций. С использованием численного эксперимента проанализированы инвазивные сценарии: внедрение суперхищника в систему «хищник–жертва», выдавливание хищника или суперхищника.

    Almasri A., Tsybulin V.G.
    A dynamic analysis of a prey – predator – superpredator system: a family of equilibria and its destruction
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1601-1615

    The paper investigates the dynamics of a finite-dimensional model describing the interaction of three populations: prey $x(t)$, its consuming predator $y(t)$, and a superpredator $z(t)$ that feeds on both species. Mathematically, the problem is formulated as a system of nonlinear first-order differential equations with the following right-hand side: $[x(1-x)-(y+z)g;\,\eta_1^{}yg-d_1^{}f-\mu_1^{}y;\,\eta_2^{}zg+d_2^{}f-\mu_2^{}z]$, where $\eta_j^{}$, $d_j^{}$, $\mu_j^{}$ ($j=1,\,2$) are positive coefficients. The considered model belongs to the class of cosymmetric dynamical systems under the Lotka\,--\,Volterra functional response $g=x$, $f=yz$, and two parameter constraints: $\mu_2^{}=d_2^{}\left(1+\frac{\mu_1^{}}{d_1^{}}\right)$, $\eta_2^{}=d_2^{}\left(1+\frac{\eta_1^{}}{d_1^{}}\right)$. In this case, a family of equilibria is being of a straight line in phase space. We have analyzed the stability of the equilibria from the family and isolated equilibria. Maps of stationary solutions and limit cycles have been constructed. The breakdown of the family is studied by violating the cosymmetry conditions and using the Holling model $g(x)=\frac x{1+b_1^{}x}$ and the Beddington–DeAngelis model $f(y,\,z)=\frac{yz}{1+b_2^{}y+b_3^{}z}$. To achieve this, the apparatus of Yudovich's theory of cosymmetry is applied, including the computation of cosymmetric defects and selective functions. Through numerical experimentation, invasive scenarios have been analyzed, encompassing the introduction of a superpredator into the predator-prey system, the elimination of the predator, or the superpredator.

  3. Говорков Д.А., Новиков В.П., Соловьёв И.Г., Цибульский В.Р.
    Интервальный анализ динамики растительного покрова
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1191-1205

    В развитие ранее полученного результата по моделированию динамики растительного покрова, вследствие изменчивости температурного фона, представлена новая схема интервального анализа динамики флористических образов формаций в случае, когда параметр скорости реагирования модели динамики каждого учетного вида растения задан интервалом разброса своих возможных значений. Желаемая в фундаментальных исследованиях детализация описания функциональных параметров макромоделей биоразнообразия, учитывающая сущностные причины наблюдаемых эволюционных процессов, может оказаться проблемной задачей. Использование более надежных интервальных оценок вариабельности функциональных параметров «обходит» проблему неопределенности в вопросах первичного оценивания эволюции фиторесурсного потенциала осваиваемых подконтрольных территорий. Полученные решения сохраняют не только качественную картину динамики видового разнообразия, но и дают строгую, в рамках исходных предположений, количественную оценку меры присутствия каждого вида растения. Практическая значимость схем двустороннего оценивания на основе конструирования уравнений для верхних и нижних границ траекторий разброса решений зависит от условий и меры пропорционального соответствия интервалов разбросов исходных параметров с интервалами разбросов решений. Для динамических систем желаемая пропорциональность далеко не всегда обеспечивается. Приведенные примеры демонстрирует приемлемую точность интервального оценивания эволюционных процессов. Важно заметить, что конструкции оценочных уравнений порождают исчезающие интервалы разбросов решений для квазипостоянных температурных возмущений системы. Иными словами, траектории стационарных температурных состояний растительного покрова предложенной схемой интервального оценивания не огрубляется. Строгость результата интервального оценивания видового состава растительного покрова формаций может стать определяющим фактором при выборе метода в задачах анализа динамики видового разнообразия и растительного потенциала территориальных систем ресурсно-экологического мониторинга. Возможности предложенного подхода иллюстрируются геоинформационными образами вычислительного анализа динамики растительного покрова полуострова Ямал и графиками ретроспективного анализа флористической изменчивости формаций ландшафтно-литологической группы «Верховые» по данным вариации летнего температурного фона метеостанции г. Салехарда от 2010 до 1935 года. Разработанные показатели флористической изменчивости и приведенные графики характеризуют динамику видового разнообразия, как в среднем, так и индивидуально, в виде интервалов возможных состояний по каждому учетному виду растения.

    Govorkov D.A., Novikov V.P., Solovyev I.G., Tsibulsky V.R.
    Interval analysis of vegetation cover dynamics
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1191-1205

    In the development of the previously obtained result on modeling the dynamics of vegetation cover, due to variations in the temperature background, a new scheme for the interval analysis of the dynamics of floristic images of formations is presented in the case when the parameter of the response rate of the model of the dynamics of each counting plant species is set by the interval of scatter of its possible values. The detailed description of the functional parameters of macromodels of biodiversity, desired in fundamental research, taking into account the essential reasons for the observed evolutionary processes, may turn out to be a problematic task. The use of more reliable interval estimates of the variability of functional parameters “bypasses” the problem of uncertainty in the primary assessment of the evolution of the phyto-resource potential of the developed controlled territories. The solutions obtained preserve not only a qualitative picture of the dynamics of species diversity, but also give a rigorous, within the framework of the initial assumptions, a quantitative assessment of the degree of presence of each plant species. The practical significance of two-sided estimation schemes based on the construction of equations for the upper and lower boundaries of the trajectories of the scatter of solutions depends on the conditions and measure of proportional correspondence of the intervals of scatter of the initial parameters with the intervals of scatter of solutions. For dynamic systems, the desired proportionality is not always ensured. The given examples demonstrate the acceptable accuracy of interval estimation of evolutionary processes. It is important to note that the constructions of the estimating equations generate vanishing intervals of scatter of solutions for quasi-constant temperature perturbations of the system. In other words, the trajectories of stationary temperature states of the vegetation cover are not roughened by the proposed interval estimation scheme. The rigor of the result of interval estimation of the species composition of the vegetation cover of formations can become a determining factor when choosing a method in the problems of analyzing the dynamics of species diversity and the plant potential of territorial systems of resource-ecological monitoring. The possibilities of the proposed approach are illustrated by geoinformation images of the computational analysis of the dynamics of the vegetation cover of the Yamal Peninsula and by the graphs of the retro-perspective analysis of the floristic variability of the formations of the landscapelithological group “Upper” based on the data of the summer temperature background of the Salehard weather station from 2010 to 1935. The developed indicators of floristic variability and the given graphs characterize the dynamics of species diversity, both on average and individually in the form of intervals of possible states for each species of plant.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.