Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Моделирование межрегиональных миграционных потоков клеточными автоматами
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1467-1483В статье исследуется проблема разработки и обоснования наиболее адекватного инструментария для прогнозирования величины и структуры межрегиональных миграционных потоков. Миграционные процессы оказывают значительное влияние на численность и демографическую структуру населения территорий, состояние и сбалансированность региональных и локальных рынков труда. Для анализа миграционных процессов и оценки их последствий необходим экономикоатематический инструментарий, позволяющий с необходимой точностью моделировать миграционные процессы и потоки для различных территорий. Рассмотрены существующие подходы и методы моделирования миграционных процессов с анализом их преимуществ и недостатков. Отмечается, что для реализации многих из этих методов необходим большой массив агрегированных статистических данных, который не всегда имеется в наличии и не характеризует поведение мигрантов на локальном уровне, на котором принимается решение о переезде на новое место жительства. Это существенно влияет на возможность применения соответствующих методов моделирования миграционных процессов и точность прогнозов величины и структуры миграционных потоков.
В работе разработана и апробирована на данных Приморского края модель клеточного автомата для моделирования межрегиональных миграционных потоков, реализующая интеграцию модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности в общую модель миграционного потока территории. Для реализации модели миграционного поведения домашних хозяйств в условиях ограниченной рациональности предложен интегральный индекс привлекательности регионов с экономической, социальной и экологической составляющими. Для оценки прогностической способности разработанной модели проведено ее сравнение с существующими моделями клеточных автоматов, используемыми для прогнозирования межрегиональных миграционных потоков. Для этих целей был использован метод вневыборочного прогнозирования, который показал статистически значимое превосходство предложенной модели, которая позволяет получать прогнозы и количественные характеристики миграционных потоков территорий на основе реального миграционного поведения домашних хозяйств на локальном уровне с учетом условий их проживания и поведенческих мотивов.
Ключевые слова: миграционные потоки, модели, сравнительный анализ, клеточные автоматы, ограниченная рациональность, точность прогноза.
Modelling interregional migration flows by the cellular automata
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1467-1483The article dwells upon investigating the issue of the most adequate tools developing and justifying to forecast the interregional migration flows value and structure. Migration processes have a significant impact on the size and demographic structure of the population of territories, the state and balance of regional and local labor markets.
To analyze the migration processes and to assess their impact an economic-mathematical tool is required which would be instrumental in modelling the migration processes and flows for different areas with the desired precision. The current methods and approaches to the migration processes modelling, including the analysis of their advantages and disadvantages, were considered. It is noted that to implement many of these methods mass aggregated statistical data is required which is not always available and doesn’t characterize the migrants behavior at the local level where the decision to move to a new dwelling place is made. This has a significant impact on the ability to apply appropriate migration processes modelling techniques and on the projection accuracy of the migration flows magnitude and structure.
The cellular automata model for interregional migration flows modelling, implementing the integration of the households migration behavior model under the conditions of the Bounded Rationality into the general model of the area migration flow was developed and tested based on the Primorye Territory data. To implement the households migration behavior model under the conditions of the Bounded Rationality the integral attractiveness index of the regions with economic, social and ecological components was proposed in the work.
To evaluate the prognostic capacity of the developed model, it was compared with the available cellular automata models used to predict interregional migration flows. The out of sample prediction method which showed statistically significant superiority of the proposed model was applied for this purpose. The model allows obtaining the forecasts and quantitative characteristics of the areas migration flows based on the households real migration behaviour at the local level taking into consideration their living conditions and behavioural motives.
-
An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 195-202Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.
Ключевые слова: segmentation, liver CT, threshold, fuzzy exponential entropy, differential evolution.
An effective segmentation approach for liver computed tomography scans using fuzzy exponential entropy
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 195-202Accurate segmentation of liver plays important in contouring during diagnosis and the planning of treatment. Imaging technology analysis and processing are wide usage in medical diagnostics, and therapeutic applications. Liver segmentation referring to the process of automatic or semi-automatic detection of liver image boundaries. A major difficulty in segmentation of liver image is the high variability as; the human anatomy itself shows major variation modes. In this paper, a proposed approach for computed tomography (CT) liver segmentation is presented by combining exponential entropy and fuzzy c-partition. Entropy concept has been utilized in various applications in imaging computing domain. Threshold techniques based on entropy have attracted a considerable attention over the last years in image analysis and processing literatures and it is among the most powerful techniques in image segmentation. In the proposed approach, the computed tomography (CT) of liver is transformed into fuzzy domain and fuzzy entropies are defined for liver image object and background. In threshold selection procedure, the proposed approach considers not only the information of liver image background and object, but also interactions between them as the selection of threshold is done by find a proper parameter combination of membership function such that the total fuzzy exponential entropy is maximized. Differential Evolution (DE) algorithm is utilizing to optimize the exponential entropy measure to obtain image thresholds. Experimental results in different CT livers scan are done and the results demonstrate the efficient of the proposed approach. Based on the visual clarity of segmented images with varied threshold values using the proposed approach, it was observed that liver segmented image visual quality is better with the results higher level of threshold.
-
Моделирование достижения консенсуса в условиях доминирования в социальной группе
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1067-1078Во многих социальных группах, например в технических комитетах по стандартизации, на между- народном, региональном и национальных уровнях, в европейских общинах, управляющих экопоселени- ями, социальных общественных движениях (occupy), международных организациях, принятие решений опирается на консенсус членов группы. Вместо голосования, когда большинство получает победу над меньшинством, консенсус позволяет найти решение, которое каждый член группы поддерживает или как минимум считает приемлемым. Такой подход гарантирует, что будут учтены все мнения членов группы, их идеи и потребности. При этом отмечается, что достижение консенсуса требует значительного време- ни, поскольку необходимо обеспечить согласие внутри группы независимо от ее размера. Было показано, что в некоторых ситуациях число итераций (согласований, переговоров) весьма значительно. Более того, в процессе принятия решений всегда присутствует риск блокировки решения меньшинством в группе, что не просто затягивает время принятия решения, а делает его невозможным. Как правило, таким мень- шинством выступает один или два одиозных человека в группе. При этом в дискуссии такой член группы старается доминировать, оставаясь всегда при своем мнении, игнорируя позицию других коллег. Это при- водит к затягиванию процесса принятия решений, с одной стороны, и ухудшению качества консенсуса — с другой, поскольку приходится учитывать только мнение доминирующего члена группы. Для выхода из кризиса в этой ситуации было предложено принимать решение по принципу «консенсус минус один» или «консенсус минус два», то есть не учитывать мнение одного или двух одиозных членов группы.
В статье на основе моделирования консенсуса с использованием модели регулярных марковских цепей исследуется вопрос, насколько сокращается время принятия решения по правилу «консенсус минус один», когда не учитывается позиция доминирующего члена группы.
Общий вывод, который вытекает из результатов моделирования, сводится к тому, что эмпирическое правило принятия решений по принципу «консенсус минус один» имеет соответствующее математиче- ское обоснование. Результаты моделирования показали, что применение правила «консенсус минус один» позволяет сократить время достижения консенсуса в группе на 76–95 %, что важно для практики.
Среднее число согласований гиперболически зависит от средней авторитарности членов группы (без учета авторитарного), что означает возможность затягивания процесса согласования при высоких значениях авторитарности членов группы.
Ключевые слова: консенсус, консенсус минус один, социальные группы, доминирование, регулярные марковские цепи, время достижения консенсуса.
Modeling consensus building in conditions of dominance in a social group
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 1067-1078In many social groups, for example, in technical committees for standardization, at the international, regional and national levels, in European communities, managers of ecovillages, social movements (occupy), international organizations, decision-making is based on the consensus of the group members. Instead of voting, where the majority wins over the minority, consensus allows for a solution that each member of the group supports, or at least considers acceptable. This approach ensures that all group members’ opinions, ideas and needs are taken into account. At the same time, it is noted that reaching consensus takes a long time, since it is necessary to ensure agreement within the group, regardless of its size. It was shown that in some situations the number of iterations (agreements, negotiations) is very significant. Moreover, in the decision-making process, there is always a risk of blocking the decision by the minority in the group, which not only delays the decisionmaking time, but makes it impossible. Typically, such a minority is one or two odious people in the group. At the same time, such a member of the group tries to dominate in the discussion, always remaining in his opinion, ignoring the position of other colleagues. This leads to a delay in the decision-making process, on the one hand, and a deterioration in the quality of consensus, on the other, since only the opinion of the dominant member of the group has to be taken into account. To overcome the crisis in this situation, it was proposed to make a decision on the principle of «consensus minus one» or «consensus minus two», that is, do not take into account the opinion of one or two odious members of the group.
The article, based on modeling consensus using the model of regular Markov chains, examines the question of how much the decision-making time according to the «consensus minus one» rule is reduced, when the position of the dominant member of the group is not taken into account.
The general conclusion that follows from the simulation results is that the rule of thumb for making decisions on the principle of «consensus minus one» has a corresponding mathematical justification. The simulation results showed that the application of the «consensus minus one» rule can reduce the time to reach consensus in the group by 76–95%, which is important for practice.
The average number of agreements hyperbolically depends on the average authoritarianism of the group members (excluding the authoritarian one), which means the possibility of delaying the agreement process at high values of the authoritarianism of the group members.
-
Метод контрастного семплирования для предсказания библиографических ссылок
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1317-1336В работе рассматривается задача поиска в научной статье фрагментов с недостающими библиографическими ссылками с помощью автоматической бинарной классификации. Для обучения модели предложен метод контрастного семплирования, новшеством которого является рассмотрение контекста ссылки с учетом границ фрагмента, максимально влияющего на вероятность нахождения в нем библиографической ссылки. Обучающая выборка формировалась из автоматически размеченных семплов — фрагментов из трех предложений с метками классов «без ссылки» и «со ссылкой», удовлетворяющих требованию контрастности: семплы разных классов дистанцируются в исходном тексте. Пространство признаков строилось автоматически по статистике встречаемости термов и расширялось за счет конструирования дополнительных признаков — выделенных в тексте сущностей ФИО, чисел, цитат и аббревиатур.
Проведена серия экспериментов на архивах научных журналов «Правоприменение» (273 статьи) и «Журнал инфектологии» (684 статьи). Классификация осуществлялась моделями Nearest Neighbours, RBF SVM, Random Forest, Multilayer Perceptron, с подбором оптимальных гиперпараметров для каждого классификатора.
Эксперименты подтвердили выдвинутую гипотезу. Наиболее высокую точность показал нейросетевой классификатор (95%), уступающий по скорости линейному, точность которого при контрастном семплировании также оказалась высока (91–94 %). Полученные значения превосходят результаты, опубликованные для задач NER и анализа тональности на данных со сравнимыми характеристиками. Высокая вычислительная эффективность предложенного метода позволяет встраивать его в прикладные системы и обрабатывать документы в онлайн-режиме.
Ключевые слова: контрастное семплирование, анализ цитирования, передискретизация данных, предсказание библиографических ссылок, текстовая классификация, искусственные нейронный сети.
Bibliographic link prediction using contrast resampling technique
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1317-1336The paper studies the problem of searching for fragments with missing bibliographic links in a scientific article using automatic binary classification. To train the model, we propose a new contrast resampling technique, the innovation of which is the consideration of the context of the link, taking into account the boundaries of the fragment, which mostly affects the probability of presence of a bibliographic links in it. The training set was formed of automatically labeled samples that are fragments of three sentences with class labels «without link» and «with link» that satisfy the requirement of contrast: samples of different classes are distanced in the source text. The feature space was built automatically based on the term occurrence statistics and was expanded by constructing additional features — entities (names, numbers, quotes and abbreviations) recognized in the text.
A series of experiments was carried out on the archives of the scientific journals «Law enforcement review» (273 articles) and «Journal Infectology» (684 articles). The classification was carried out by the models Nearest Neighbors, RBF SVM, Random Forest, Multilayer Perceptron, with the selection of optimal hyperparameters for each classifier.
Experiments have confirmed the hypothesis put forward. The highest accuracy was reached by the neural network classifier (95%), which is however not as fast as the linear one that showed also high accuracy with contrast resampling (91–94%). These values are superior to those reported for NER and Sentiment Analysis on comparable data. The high computational efficiency of the proposed method makes it possible to integrate it into applied systems and to process documents online.
-
Семантическая структуризация текстовых документов на основе паттернов сущностей естественного языка
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1185-1197Рассматривается технология создания паттернов из слов (понятий) естественного языка по текстовым данным в модели «мешок слов». Паттерны применяются для снижения размерности исходного пространства в описании документов и поиска семантически связанных слов по темам. Процесс снижения размерности реализуется через формирование по паттернам латентных признаков. Исследуется многообразие структур отношений документов для разбиения их на темы в латентном пространстве.
Считается, что заданное множество документов (объектов) разделено на два непересекающихся класса, для анализа которых необходимо использовать общий словарь. Принадлежность слов к общему словарю изначально неизвестна. Объекты классов рассматриваются в ситуации оппозиции друг к другу. Количественные параметры оппозиционности определяются через значения устойчивости каждого признака и обобщенные оценки объектов по непересекающимся наборам признаков.
Для вычисления устойчивости используются разбиения значений признаков на непересекающиеся интервалы, оптимальные границы которых определяются по специальному критерию. Максимум устойчивости достигается при условии, что в границах каждого интервала содержатся значения одного из двух классов.
Состав признаков в наборах (паттернах из слов) формируется из упорядоченной по значениям устойчивости последовательности. Процесс формирования паттернов и латентных признаков на их основе реализуется по правилам иерархической агломеративной группировки.
Набор латентных признаков используется для кластерного анализа документов по метрическим алгоритмам группировки. В процессе анализа применяется коэффициент контентной аутентичности на основе данных о принадлежности документов к классам. Коэффициент является численной характеристикой доминирования представителей классов в группах.
Для разбиения документов на темы предложено использовать объединение групп по отношению их центров. В качестве закономерностей по каждой теме рассматривается упорядоченная по частоте встречаемости последовательность слов из общего словаря.
Приводятся результаты вычислительного эксперимента на коллекциях авторефератов научных диссертаций. Сформированы последовательности слов из общего словаря по четырем темам.
Ключевые слова: тематическое моделирование, иерархическая агломеративная группировка, онтология, общий словарь, контентная аутентичность.
Semantic structuring of text documents based on patterns of natural language entities
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1185-1197The technology of creating patterns from natural language words (concepts) based on text data in the bag of words model is considered. Patterns are used to reduce the dimension of the original space in the description of documents and search for semantically related words by topic. The process of dimensionality reduction is implemented through the formation of patterns of latent features. The variety of structures of document relations is investigated in order to divide them into themes in the latent space.
It is considered that a given set of documents (objects) is divided into two non-overlapping classes, for the analysis of which it is necessary to use a common dictionary. The belonging of words to a common vocabulary is initially unknown. Class objects are considered as opposition to each other. Quantitative parameters of oppositionality are determined through the values of the stability of each feature and generalized assessments of objects according to non-overlapping sets of features.
To calculate the stability, the feature values are divided into non-intersecting intervals, the optimal boundaries of which are determined by a special criterion. The maximum stability is achieved under the condition that the boundaries of each interval contain values of one of the two classes.
The composition of features in sets (patterns of words) is formed from a sequence ordered by stability values. The process of formation of patterns and latent features based on them is implemented according to the rules of hierarchical agglomerative grouping.
A set of latent features is used for cluster analysis of documents using metric grouping algorithms. The analysis applies the coefficient of content authenticity based on the data on the belonging of documents to classes. The coefficient is a numerical characteristic of the dominance of class representatives in groups.
To divide documents into topics, it is proposed to use the union of groups in relation to their centers. As patterns for each topic, a sequence of words ordered by frequency of occurrence from a common dictionary is considered.
The results of a computational experiment on collections of abstracts of scientific dissertations are presented. Sequences of words from the general dictionary on 4 topics are formed.
-
Разработка и исследование алгоритмов машинного обучения для решения задачи классификации в публикациях Twitter
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 185-195Посты в социальных сетях способны как предсказывать движение финансового рынка, так и в некоторых случаях даже определять его направление. Анализ постов в Twitter способствует прогнозированию цен на криптовалюту. Специфика рассматриваемого сообщества заключается в особенной лексике. Так, в постах используются сленговые выражения, аббревиатуры и сокращения, наличие которых затрудняет векторизацию текстовых данных, в следствие чего рассматриваются методы предобработки такие, как лемматизация Stanza и применение регулярных выражений. В этой статье описываются простейшие модели машинного обучения, которые могут работать, несмотря на такие проблемы, как нехватка данных и короткие сроки прогнозирования. Решается задача бинарной текстовой классификации, в условиях которой слово рассматривается как элемент бинарного вектора единицы данных. Базисные слова определяются на основе частотного анализа упоминаний того или иного слова. Разметка составляется на основе свечей Binance с варьируемыми параметрами для более точного описания тренда изменения цены. В работе вводятся метрики, отражающие распределение слов в зависимости от их принадлежности к положительному или отрицательному классам. Для решения задачи классификации использовались dense-модель с подобранными при помощи Keras Tuner параметрами, логистическая регрессия, классификатор случайного леса, наивный байесовский классификатор, способный работать с малочисленной выборкой, что весьма актуально для нашей задачи, и метод k-ближайших соседей. Было проведено сравнение построенных моделей на основе метрики точности предсказанных меток. В ходе исследования было выяснено, что наилучшим подходом является использование моделей, которые предсказывают ценовые движения одной монеты. Наши модели имеют дело с постами, содержащими упоминания проекта LUNA, которого на данный момент уже не существует. Данный подход к решению бинарной классификации текстовых данных широко применяется для предсказания цены актива, тренда ее движения, что часто используется в автоматизированной торговле.
Ключевые слова: криптовалюты, Twitter, машинное обучение, обработка естественного языка, векторизация, dense модель, логистическая регрессия, случайный лес, KNN, наивный байесовский классификатор.
Development of and research on machine learning algorithms for solving the classification problem in Twitter publications
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 185-195Posts on social networks can both predict the movement of the financial market, and in some cases even determine its direction. The analysis of posts on Twitter contributes to the prediction of cryptocurrency prices. The specificity of the community is represented in a special vocabulary. Thus, slang expressions and abbreviations are used in posts, the presence of which makes it difficult to vectorize text data, as a result of which preprocessing methods such as Stanza lemmatization and the use of regular expressions are considered. This paper describes created simplest machine learning models, which may work despite such problems as lack of data and short prediction timeframe. A word is considered as an element of a binary vector of a data unit in the course of the problem of binary classification solving. Basic words are determined according to the frequency analysis of mentions of a word. The markup is based on Binance candlesticks with variable parameters for a more accurate description of the trend of price changes. The paper introduces metrics that reflect the distribution of words depending on their belonging to a positive or negative classes. To solve the classification problem, we used a dense model with parameters selected by Keras Tuner, logistic regression, a random forest classifier, a naive Bayesian classifier capable of working with a small sample, which is very important for our task, and the k-nearest neighbors method. The constructed models were compared based on the accuracy metric of the predicted labels. During the investigation we recognized that the best approach is to use models which predict price movements of a single coin. Our model deals with posts that mention LUNA project, which no longer exist. This approach to solving binary classification of text data is widely used to predict the price of an asset, the trend of its movement, which is often used in automated trading.
-
Разработка гибридной имитационной модели сборочного цеха
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1359-1379В представленной работе разработана гибридная имитационная модель сборочного цеха в среде AnyLogic, которая позволяет подбирать оптимальные параметры производственной системы. Для построения гибридной модели использовались подходы, объединяющие дискретно-событийное моделирование и агентное в единую модель с интегрирующим взаимодействием. В рамках данной работы описан механизм функционирования сложной производственной системы, состоящей из нескольких участников-агентов. Каждому агенту соответствует класс, в котором задается определенный набор параметров агента. В имитационной модели были учтены три основные группы операции, выполняющиеся последовательно, определена логика работы с забракованными комплектами. Процесс сборки изделия представляет собой процесс, протекающий в многофазной разомкнутой системе массового обслуживания с ожиданием. Также есть признаки замкнутой системы — потоки брака для повторной обработки. При создании распределительной системы в сегменте окончательного контроля используются законы выполнения заявок в очереди типа FIFO. Для функциональной оценки производственной системы в имитационной модели включены несколько функциональных переменных, описывающих количество готовых изделий, среднее время подготовки изделий, количество и доля брака, результат моделирования для проведения исследований, а также функциональные переменные, в которых будут отображаться расчетные коэффициенты использования. Были проведены серии экспериментов по моделированию с целью изучения влияния поведения агентов системы на общие показатели эффективности производственной системы. В ходе эксперимента было установлено, что на показатель среднего времени подготовки изделия основное влияние оказывают такие параметры, как средняя скорость подачи комплекта заготовки, среднее время выполнения операций. На заданном промежутке ограничений удалось подобрать оптимальный набор параметров, при котором удалось достичь наиболее эффективной работы сборочной линии. Данный эксперимент подтверждает основной принцип агентного моделирования: децентрализованные агенты вносят личный вклад и оказывают влияние на работу всей моделируемой системы в целом. Вре зультате проведенных экспериментов, благодаря подбору оптимального набора параметров, удалось улучшить основные показатели функционирования сборочного цеха, а именно: увеличить показатель производительности на 60%; снизить показатель средней продолжительности сборки изделия на 38%.
Ключевые слова: гибридная имитационная модель, методы имитационного моделирования, дискретно-событийное моделирование, агентное моделирование, параметры производственной системы, системы массового обслуживания.
Development of a hybrid simulation model of the assembly shop
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1359-1379In the presented work, a hybrid optimal simulation model of an assembly shop in the AnyLogic environment has been developed, which allows you to select the parameters of production systems. To build a hybrid model of the investigative approach, discrete-event modeling and aggressive modeling are combined into a single model with an integrating interaction. Within the framework of this work, a mechanism for the development of a production system consisting of several participants-agents is described. An obvious agent corresponds to a class in which a set of agent parameters is specified. In the simulation model, three main groups of operations performed sequentially were taken into account, and the logic for working with rejected sets was determined. The product assembly process is a process that occurs in a multi-phase open-loop system of redundant service with waiting. There are also signs of a closed system — scrap flows for reprocessing. When creating a distribution system in the segment, it is mandatory to use control over the execution of requests in a FIFO queue. For the functional assessment of the production system, the simulation model includes several functional functions that describe the number of finished products, the average time of preparation of products, the number and percentage of rejects, the simulation result for the study, as well as functional variables in which the calculated utilization factors will be used. A series of modeling experiments were carried out in order to study the behavior of the agents of the system in terms of the overall performance indicators of the production system. During the experiment, it was found that the indicator of the average preparation time of the product is greatly influenced by such parameters as: the average speed of the set of products, the average time to complete operations. At a given limitation interval, we managed to select a set of parameters that managed to achieve the largest possible operation of the assembly line. This experiment implements the basic principle of agent-based modeling — decentralized agents make a personal contribution and affect the operation of the entire simulated system as a whole. As a result of the experiments, thanks to the selection of a large set of parameters, it was possible to achieve high performance indicators of the assembly shop, namely: to increase the productivity indicator by 60%; reduce the average assembly time of products by 38%.
-
Стоимостная оценка машин при случайном процессе их деградации и досрочной продажи
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 797-815Исследуется модель процесса использования машин, учитывающая вероятностный характер процесса их эксплуатации и продажи. В ней учитываются возможность случайных скрытых отказов, после которых состояние машин ухудшается скачком, а также случайно возникающая необходимость досрочной (до окончания срока службы) продажи машины, требующей, вообще говоря, случайного времени. Модель ориентирована на оценку рыночной стоимости и сроков службы машин в соответствии с международными стандартами оценки. Строго говоря, рыночная стоимость подержанной машины зависит от ее технического состояния, однако на практике стоимость машины устанавливают с учетом только ее возраста, поскольку общепринятых измерителей технического состояния машин пока еще не предложено. Тем самым стоимость подержанной машины принимается на уровне средней стоимости аналогичных машин соответствующего возраста. В этих целях оценщики используют зависимости стоимости машин от возраста, не всегда обоснованные и не учитывающие ни деградации машин, ни вероятностного характера процесса их использования. Предлагаемая модель основана на принципе ожидания выгод. В ней состояние машины характеризуется интенсивностью приносимых ею выгод. Машина подвергается сложному пуассоновскому потоку отказов, после каждого из которых состояние машины скачком ухудшается и может даже оказаться предельным. Возникают также ситуации, исключающие дальнейшее использование машины ее владельцем. В таких ситуациях владелец выставляет машину на продажу до окончания срока ее службы (досрочно), причем продажа требует случайного времени. Модель позволяет учесть влияние таких ситуаций и построить аналитическую зависимость, связывающую рыночную стоимость машины с ее состоянием, и рассчитать средние коэффициенты изменения рыночной стоимости машин с возрастом. При этом удается также учесть влияние инфляции и утилизационной стоимости машин. Мы установили, что опасность досрочных продаж существенно влияет на сроки службы и стоимость новых и подержанных машин. В то же время зависимости стоимости машин от возраста в значительной степени определяются коэффициентом вариации срока службы машин. Полученные результаты позволяют получать более обоснованные оценки рыночной стоимости машин, в том числе для целей системы национальных счетов.
Ключевые слова: машины и оборудование, пуассоновский процесс, деградация, рыночная стоимость, принцип ожидания выгод, срок службы, срок владения, досрочная продажа, инфляция.
Valuation of machines at the random process of their degradation and premature sales
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 797-815The model of the process of using machinery and equipment is considered, which takes into account the probabilistic nature of the process of their operation and sale. It takes into account the possibility of random hidden failures, after which the condition of the machine deteriorates abruptly, as well as the randomly arising need for premature (before the end of its service life) sale of the machine, which requires, generally speaking, random time. The model is focused on assessing the market value and service life of machines in accordance with International Valuation Standards. Strictly speaking, the market value of a used machine depends on its technical condition, but in practice, appraisers only take into account its age, since generally accepted measures of the technical condition of machines do not yet exist. As a result, the market value of a used machine is assumed to be equal to the average market value of similar machines of the corresponding age. For these purposes, appraisers use coefficients that reflect the influence of the age of machines on their market value. Such coefficients are not always justified and do not take into account either the degradation of the machine or the probabilistic nature of the process of its use. The proposed model is based on the anticipation of benefits principle. In it, we characterize the state of the machine by the intensity of the benefits it brings. The machine is subjected to a complex Poisson failure process, and after failure its condition abruptly worsens and may even reach its limit. Situations also arise that preclude further use of the machine by its owner. In such situations, the owner puts the machine up for sale before the end of its service life (prematurely), and the sale requires a random timing. The model allows us to take into account the influence of such situations and construct an analytical relationship linking the market value of a machine with its condition, and calculate the average coefficients of change in the market value of machines with age. At the same time, it is also possible to take into account the influence of inflation and the scrap cost of the machine. We have found that the rate of prematurely sales has a significant impact on the cost of new and used machines. The model also allows us to take into account the influence of inflation and the scrap value of the machine. We have found that the rate of premature sales has a significant impact on the service life and market value of new and used machines. At the same time, the dependence of the market value of machines on age is largely determined by the coefficient of variation of the service life of the machines. The results obtained allow us to obtain more reasonable estimates of the market value of machines, including for the purposes of the system of national accounts.
-
Поиск точек разладки в биометрических данных: ретроспективные непараметрические методы сегментации на основе динамического программирования и скользящих окон
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1295-1321Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.
Ключевые слова: космическая медицина, локомоторное тестирование, временные ряды, точка разладки, сегментация, непараметрический, ретроспективный, динамическое программирование, скользящее окно.
Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.
-
A survey on the application of large language models in software engineering
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1715-1726Large Language Models (LLMs) are transforming software engineering by bridging the gap between natural language and programming languages. These models have revolutionized communication within development teams and the Software Development Life Cycle (SDLC) by enabling developers to interact with code using natural language, thereby improving workflow efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and bug detection, thus reducing manual effort and accelerating the development process. The integration of LLMs into the development process offers several advantages, including the automation of error correction, enhanced collaboration, and the ability to generate high-quality, functional code based on natural language input. Additionally, LLMs assist developers in understanding and implementing complex software requirements and design patterns. This paper also discusses the evolution of LLMs from simple code completion tools to sophisticated models capable of performing high-level software engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption, such as issues related to model accuracy, interpretability, and potential biases. These limitations must be addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes by identifying key areas for future research, including improving the adaptability of LLMs to specific software domains, enhancing their contextual understanding, and refining their capabilities to generate semantically accurate and efficient code. This survey provides valuable insights into the evolving role of LLMs in software engineering, offering a foundation for further exploration and practical implementation.
A survey on the application of large language models in software engineering
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1715-1726Large Language Models (LLMs) are transforming software engineering by bridging the gap between natural language and programming languages. These models have revolutionized communication within development teams and the Software Development Life Cycle (SDLC) by enabling developers to interact with code using natural language, thereby improving workflow efficiency. This survey examines the impact of LLMs across various stages of the SDLC, including requirement gathering, system design, coding, debugging, testing, and documentation. LLMs have proven to be particularly useful in automating repetitive tasks such as code generation, refactoring, and bug detection, thus reducing manual effort and accelerating the development process. The integration of LLMs into the development process offers several advantages, including the automation of error correction, enhanced collaboration, and the ability to generate high-quality, functional code based on natural language input. Additionally, LLMs assist developers in understanding and implementing complex software requirements and design patterns. This paper also discusses the evolution of LLMs from simple code completion tools to sophisticated models capable of performing high-level software engineering tasks. However, despite their benefits, there are challenges associated with LLM adoption, such as issues related to model accuracy, interpretability, and potential biases. These limitations must be addressed to ensure the reliable deployment of LLMs in production environments. The paper concludes by identifying key areas for future research, including improving the adaptability of LLMs to specific software domains, enhancing their contextual understanding, and refining their capabilities to generate semantically accurate and efficient code. This survey provides valuable insights into the evolving role of LLMs in software engineering, offering a foundation for further exploration and practical implementation.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





