Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'optimization algorithms':
Найдено статей: 105
  1. Ветчанин Е.В., Тененев В.А., Килин А.А.
    Оптимальное управление движением в идеальной жидкости тела c винтовой симметрией с внутренними роторами
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 741-759

    В данной работе рассматривается управляемое движение в идеальной жидкости винтового тела с тремя лопастями за счет вращения трех внутренних роторов. Ставится задача выбора управляющих воздействий, обеспечивающих движение тела вблизи заданной траектории. Для определения управлений, гарантирующих движение вблизи заданной кривой, предложены методы, основанные на применении гибридных генетических алгоритмов (генетические алгоритмы с вещественным кодированием с дополнительным обучением лидера популяции каким-либо градиентным методом) и искусственных нейронных сетей. Корректность работы предложенных численных методов оценивается с помощью полученных ранее дифференциальных уравнений, определяющих закон изменения управляющих воздействий для заданной траектории.

    В подходе на основе гибридных генетических алгоритмов исходная задача минимизации интегрального функционала сводится к минимизации функции многих переменных. Заданный временной интервал разбивается на малые элементы, на каждом из которых управляющие воздействия аппроксимируются полиномами Лагранжа 2 и 3 порядков. Гибридные генетические алгоритмы при соответствующих настройках воспроизводят решение, близкое точному. Однако стоимость расчета 1 секунды физического процесса составляет порядка 300 секунд процессорного времени.

    Для повышения быстродействия расчета управляющих воздействий предложен алгоритм на основе искусственных нейронных сетей. В качестве входного сигнала нейронная сеть принимает компоненты требуемого вектора перемещения. В качестве выходного сигнала возвращаются узловые значения полиномов Лагранжа, приближенно описывающих управляющие воздействия. Нейронная сеть обучается хорошо известным методом обратного распространения ошибки. Обучающая выборка генерируется с помощью подхода на основе гибридных генетических алгоритмов. Расчет 1 секунды физического процесса с помощью нейронной сети требует примерно 0.004 секунды процессорного времени. То есть на 6 порядков быстрее по сравнению в гибридным генетическим алгоритмом. Управление, рассчитанное с помощью искусственной нейронной сети, отличается от точного. Однако, несмотря на данное отличие, обеспечивает достаточно точное следование по заданной траектории.

    Vetchanin E.V., Tenenev V.A., Kilin A.A.
    Optimal control of the motion in an ideal fluid of a screw-shaped body with internal rotors
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 741-759

    In this paper we consider the controlled motion of a helical body with three blades in an ideal fluid, which is executed by rotating three internal rotors. We set the problem of selecting control actions, which ensure the motion of the body near the predetermined trajectory. To determine controls that guarantee motion near the given curve, we propose methods based on the application of hybrid genetic algorithms (genetic algorithms with real encoding and with additional learning of the leader of the population by a gradient method) and artificial neural networks. The correctness of the operation of the proposed numerical methods is estimated using previously obtained differential equations, which define the law of changing the control actions for the predetermined trajectory.

    In the approach based on hybrid genetic algorithms, the initial problem of minimizing the integral functional reduces to minimizing the function of many variables. The given time interval is broken up into small elements, on each of which the control actions are approximated by Lagrangian polynomials of order 2 and 3. When appropriately adjusted, the hybrid genetic algorithms reproduce a solution close to exact. However, the cost of calculation of 1 second of the physical process is about 300 seconds of processor time.

    To increase the speed of calculation of control actions, we propose an algorithm based on artificial neural networks. As the input signal the neural network takes the components of the required displacement vector. The node values of the Lagrangian polynomials which approximately describe the control actions return as output signals . The neural network is taught by the well-known back-propagation method. The learning sample is generated using the approach based on hybrid genetic algorithms. The calculation of 1 second of the physical process by means of the neural network requires about 0.004 seconds of processor time, that is, 6 orders faster than the hybrid genetic algorithm. The control calculated by means of the artificial neural network differs from exact control. However, in spite of this difference, it ensures that the predetermined trajectory is followed exactly.

    Просмотров за год: 12. Цитирований: 1 (РИНЦ).
  2. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Gasnikov A.V., Kubentayeva M.B.
    Searching stochastic equilibria in transport networks by universal primal-dual gradient method
    Computer Research and Modeling, 2018, v. 10, no. 3, pp. 335-345

    We consider one of the problems of transport modelling — searching the equilibrium distribution of traffic flows in the network. We use the classic Beckman’s model to describe time costs and flow distribution in the network represented by directed graph. Meanwhile agents’ behavior is not completely rational, what is described by the introduction of Markov logit dynamics: any driver selects a route randomly according to the Gibbs’ distribution taking into account current time costs on the edges of the graph. Thus, the problem is reduced to searching of the stationary distribution for this dynamics which is a stochastic Nash – Wardrope equilibrium in the corresponding population congestion game in the transport network. Since the game is potential, this problem is equivalent to the problem of minimization of some functional over flows distribution. The stochasticity is reflected in the appearance of the entropy regularization, in contrast to non-stochastic case. The dual problem is constructed to obtain a solution of the optimization problem. The universal primal-dual gradient method is applied. A major specificity of this method lies in an adaptive adjustment to the local smoothness of the problem, what is most important in case of the complex structure of the objective function and an inability to obtain a prior smoothness bound with acceptable accuracy. Such a situation occurs in the considered problem since the properties of the function strongly depend on the transport graph, on which we do not impose strong restrictions. The article describes the algorithm including the numerical differentiation for calculation of the objective function value and gradient. In addition, the paper represents a theoretical estimate of time complexity of the algorithm and the results of numerical experiments conducted on a small American town.

    Просмотров за год: 28.
  3. Конюхов В.М., Конюхов И.В., Чекалин А.Н.
    Numerical Simulation, Parallel Algorithms and Software for Performance Forecast of the System “Fractured-Porous Reservoir – Producing Well” During its Commissioning Into Operation
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1069-1075

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

    The mathematical model, finite-difference schemes and algorithms for computation of transient thermoand hydrodynamic processes involved in commissioning the unified system including the oil producing well, electrical submersible pump and fractured-porous reservoir with bottom water are developed. These models are implemented in the computer package to simulate transient processes with simultaneous visualization of their results along with computations. An important feature of the package Oil-RWP is its interaction with the special external program GCS which simulates the work of the surface electric control station and data exchange between these two programs. The package Oil-RWP sends telemetry data and current parameters of the operating submersible unit to the program module GCS (direct coupling). The station controller analyzes incoming data and generates the required control parameters for the submersible pump. These parameters are sent to Oil-RWP (feedback). Such an approach allows us to consider the developed software as the “Intellectual Well System”.

    Some principal results of the simulations can be briefly presented as follows. The transient time between inaction and quasi-steady operation of the producing well depends on the well stream watering, filtration and capacitive parameters of oil reservoir, physical-chemical properties of phases and technical characteristics of the submersible unit. For the large time solution of the nonstationary equations governing the nonsteady processes is practically identical to the inverse quasi-stationary problem solution with the same initial data. The developed software package is an effective tool for analysis, forecast and optimization of the exploiting parameters of the unified oil-producing complex during its commissioning into the operating regime.

  4. Beed R.S., Sarkar S., Roy A., Dutta Biswas S., Biswas S.
    A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 67-85

    Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.

    Beed R.S., Sarkar S., Roy A., Dutta Biswas S., Biswas S.
    A hybrid multi-objective carpool route optimization technique using genetic algorithm and A* algorithm
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 67-85

    Carpooling has gained considerable importance as an effective solution for reducing pollution, mitigation of traffic and congestion on the roads, reduced demand for parking facilities, lesser energy and fuel consumption and most importantly, reduction in carbon emission, thus improving the quality of life in cities. This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem in the domain of multiobjective optimization having multiple conflicting objectives. Though the Genetic Algorithm provides optimal solutions, the A* algorithm because of its efficiency in providing the shortest route between any two points based on heuristics, enhances the optimal routes obtained using the Genetic algorithm. The refined routes obtained using the GA-A* algorithm, are further subjected to dominance test to obtain non-dominating solutions based on Pareto-Optimality. The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs while maximizing the utilization of the car. The proposed algorithm has been implemented over the Salt Lake area of Kolkata. Route distance and detour distance for the optimal routes obtained using the proposed algorithm are consistently lesser for the same number of passengers when compared to the corresponding results obtained from an existing algorithm. Various statistical analysis like boxplots have also confirmed that the proposed algorithm regularly performed better than the existing algorithm using only Genetic Algorithm.

  5. Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

    Tran T.T., Pham C.T.
    A hybrid regularizers approach based model for restoring image corrupted by Poisson noise
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 965-978

    Image denoising is one of the fundamental problems in digital image processing. This problem usually refers to the reconstruction of an image from an observed image degraded by noise. There are many factors that cause this degradation such as transceiver equipment, or environmental influences, etc. In order to obtain higher quality images, many methods have been proposed for image denoising problem. Most image denoising method are based on total variation (TV) regularization to develop efficient algorithms for solving the related optimization problem. TV-based models have become a standard technique in image restoration with the ability to preserve image sharpness.

    In this paper, we focus on Poisson noise usually appearing in photon-counting devices. We propose an effective regularization model based on combination of first-order and fractional-order total variation for image reconstruction corrupted by Poisson noise. The proposed model allows us to eliminate noise while edge preserving. An efficient alternating minimization algorithm is employed to solve the optimization problem. Finally, provided numerical results show that our proposed model can preserve more details and get higher image visual quality than recent state-of-the-art methods.

  6. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И.
    Молекулярно-динамические исследования равновесных конфигураций одноименно заряженных частиц в планарных системах с круговой симметрией
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 609-618

    В данной работе представлены результаты численного анализа равновесных конфигураций отрицательно заряженных частиц (электронов), запертых в круговой области бесконечным внешним потенциалом на ее границе. Для поиска устойчивых конфигураций с минимальной энергией авторами разработан гибридный вычислительный алгоритм. Основой алгоритма являются интерполяционные формулы, полученные из анализа равновесных конфигураций, полученных с помощью вариационного принципа минимума энергии для произвольного, но конечного числа частиц в циркулярной модели. Решения нелинейных уравнений данной модели предсказывают формирование оболочечной структуры в виде колец (оболочек), заполненных электронами, число которых уменьшается при переходе от внешнего кольца к внутренним. Число колец зависит от полного числа заряженных частиц. Полученные интерполяционные формулы распределения полного числа электронов по кольцам используются в качестве начальных конфигураций для метода молекулярной динамики. Данный подход позволяет значительно повысить скорость достижения равновесной конфигурации для произвольно выбранного числа частиц по сравнению с алгоритмом имитации отжига Метрополиса и другими алгоритмами, основанными на методах глобальной оптимизации.

    Nikonov E.G., Nazmitdinov R.G., Glukhovtsev P.I.
    Molecular dynamics studies of equilibrium configurations of equally charged particles in planar systems with circular symmetry
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 609-618

    The equilibrium configurations of charged electrons, confined in the hard disk potential, are analysed by means of the hybrid numerical algorithm. The algorithm is based on the interpolation formulas, that are obtained from the analysis of the equilibrium configurations, provided by the variational principle developed in the circular model. The solution of the nonlinear equations of the circular model yields the formation of the shell structure which is composed of the series of rings. Each ring contains a certain number of particles, which decreases as one moves from the boundary ring to the central one. The number of rings depends on the total number of electrons. The interpolation formulas provide the initial configurations for the molecular dynamics calculations. This approach makes it possible to significantly increase the speed at which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.

  7. Мезенцев Ю.А., Разумникова О.М., Эстрайх И.В., Тарасова И.В., Трубникова О.А.
    Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693

    Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.

    Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.

    В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.

    Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.

    Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.

    Mezentsev Y.A., Razumnikova O.M., Estraykh I.V., Tarasova I.V., Trubnikova O.A.
    Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693

    The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.

    The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.

    In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.

    To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.

    The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.

  8. Кхан С.А., Шулепина С., Шулепин Д., Лукманов Р.А.
    Обзор алгоритмических решений для развертывания нейронных сетей на легких устройствах
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1601-1619

    В современном мире, ориентированном на технологии, легкие устройства, такие как устройства Интернета вещей (IoT) и микроконтроллеры (MCU), становятся все более распространенными. Эти устройства более энергоэффективны и доступны по цене, но часто обладают урезанными возможностями, по сравнению со стандартными версиями, такими как ограниченная память и вычислительная мощность. Современные модели машинного обучения могут содержать миллионы параметров, что приводит к значительному росту требований по объему памяти. Эта сложность не только затрудняет развертывание больших моделей на устройствах с ограниченными ресурсами, но и увеличивает риск задержек и неэффективности при обработке данных, что критично в случаях, когда требуются ответы в реальном времени, таких как автономное вождение или медицинская диагностика.

    В последние годы нейронные сети достигли значительного прогресса в методах оптимизации моделей, что помогает в развертывании и инференсе на этих небольших устройствах. Данный обзор представляет собой подробное исследование прогресса и последних достижений в оптимизации нейронных сетей, сосредотачиваясь на ключевых областях, таких как квантизация, прореживание, дистилляция знаний и поиск архитектур нейронных сетей. Обзор рассматривает, как эти алгоритмические решения развивались и как новые подходы улучшили существующие методы, делая нейронные сети более эффективными. Статья предназначена для исследователей, практиков и инженеров в области машинного обучения, которые могут быть незнакомы с этими методами, но хотят изучить доступные техники. В работе подчеркиваются текущие исследования в области оптимизации нейронных сетей для достижения лучшей производительности, снижения потребления энергии и ускорения времени обучения, что играет важную роль в дальнейшей масштабируемости нейронных сетей. Кроме того, в обзоре определяются пробелы в текущих исследованиях и закладывается основа для будущих исследований, направленных на повышение применимости и эффективности существующих стратегий оптимизации.

    Khan S.A., Shulepina S., Shulepin D., Lukmanov R.A.
    Review of algorithmic solutions for deployment of neural networks on lite devices
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1601-1619

    In today’s technology-driven world, lite devices like Internet of Things (IoT) devices and microcontrollers (MCUs) are becoming increasingly common. These devices are more energyefficient and affordable, often with reduced features compared to the standard versions such as very limited memory and processing power for typical machine learning models. However, modern machine learning models can have millions of parameters, resulting in a large memory footprint. This complexity not only makes it difficult to deploy these large models on resource constrained devices but also increases the risk of latency and inefficiency in processing, which is crucial in some cases where real-time responses are required such as autonomous driving and medical diagnostics. In recent years, neural networks have seen significant advancements in model optimization techniques that help deployment and inference on these small devices. This narrative review offers a thorough examination of the progression and latest developments in neural network optimization, focusing on key areas such as quantization, pruning, knowledge distillation, and neural architecture search. It examines how these algorithmic solutions have progressed and how new approaches have improved upon the existing techniques making neural networks more efficient. This review is designed for machine learning researchers, practitioners, and engineers who may be unfamiliar with these methods but wish to explore the available techniques. It highlights ongoing research in optimizing networks for achieving better performance, lowering energy consumption, and enabling faster training times, all of which play an important role in the continued scalability of neural networks. Additionally, it identifies gaps in current research and provides a foundation for future studies, aiming to enhance the applicability and effectiveness of existing optimization strategies.

  9. Токарев С.М.
    Математическое моделирование термической дистилляции воды при пленочном течении в вакууме
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 205-211

    Статья посвящена математическому моделированию процесса обессоливания природной воды методом термодистилляции. В статье приведены уравнения, позволяющие описать процессы пленочного течения и кипения воды, конденсации пара и поддержания вакуума. Представлен алгоритм расчета, реализованный в системе компьютерной математики MatLab и электронных таблицах Excel, и исходные данные, необходимые для расчета. Модель проверена на адекватность. Приведен расчет десятикорпусной дистилляционной установки. Результаты работы могут быть использованы при проектировании и оптимизации технологических режимов дистилляционных установок.

    Tokarev S.M.
    Mathematic modeling of thermal distillation of water in film flowing under vacuum
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 205-211

    The article is dedicated to mathematic modeling of natural water desalination process by method of thermal distillation. The article gives the equations which allow describing the processes of film flowing and boiling of water, steam condensation and vacuum maintenance. The article presents the algorithm of calculation, implemented in MatLab computer mathematic system and Excel electronic tables, and the initial data required for the calculation. The model has been checked for adequacy. The calculation of ten-effect distillation system is given. The results of work can be used in design and optimization of process conditions for distillation systems.

    Просмотров за год: 4. Цитирований: 1 (РИНЦ).
  10. Дидыч Я.О., Малинецкий Г.Г.
    Анализ стратегий противников при игре в модифицированный «Морской бой»
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 817-827

    Врабо те рассматривается известная игра «Морской бой». Цель статьи — предложить модифицированную версию «Морского боя» и найти оптимальные стратегии действий игроков в новых правилах. Изменения коснулись как применяемых атакующих стратегий (добавлена новая возможность атаки, охватывающая четыре клетки за один выстрел), размера поля (использовались варианты игры для полей 10 × 10, 20 × 20, 30 × 30), так и правил расстановки кораблей в процессе боя (добавлена возможность перемещения корабля из зоны обстрела). Игра решалась с применением аппарата теории игр: составлены платежные матрицы для каждого варианта изменяемых правил, для них найдены оптимальные смешанные и чистые стратегии. При решении платежных матриц использовался итерационный метод. Симуляция состояла в применении пяти алгоритмов атаки и шести алгоритмов защиты с вариацией параметров при игре «каждого с каждым». Атакующие алгоритмы варьировались в разрезе 100 различных наборов значений, алгоритмы защиты — в разрезе 150 каждый. Важным результатом стало то, что в рамках этих ал- горитмов модифицированный «Морской бой» может быть решен, — то есть могут быть найдены устойчивые чистые или смешанные стратегии поведения, обеспечивающие сторонам оптимальный исход с точки зрения теории игр. Помимо этого, сделана оценка влияния изменений правил стандартного «Морского боя» на результат противостояния. Приведено сравнение с результатами, полученными авторами в предыдущей работе по данной тематике. На основе сопоставления полученных платежных матриц со статистическим анализом, проведенным ранее, отмечено, что стандартный «Морской бой» может быть представлен как частный случай рассмотренных в данной работе модификаций. Задача актуальна как с точки зрения ее применения в военном деле, так и в гражданских областях. Использование результатов статьи способно сохранить ресурсы при геологоразведке, обеспечить преимущество в военном противостоянии, сохранить детали, подвергающиеся разрушительному воздействию, и так далее.

    Didych Y.O., Malinetsky G.G.
    The analysis of player’s behaviour in modified “Sea battle” game
    Computer Research and Modeling, 2016, v. 8, no. 5, pp. 817-827

    The well-known “Sea battle” game is in the focus of the current job. The main goal of the article is to provide modified version of “Sea battle” game and to find optimal players’ strategies in the new rules. Changes were applied to attacking strategies (new option to attack hitting four cells in one shot was added) as well as to the size of the field (sizes of 10 × 10, 20 × 20, 30 × 30 were used) and to the rules of disposal algorithms during the game (new possibility to move the ship off the attacking zone). The game was solved with the use of game theory capabilities: payoff matrices were found for each version of altered rules, for which optimal pure and mixed strategies were discovered. For solving payoff matrices iterative method was used. The simulation was in applying five attacking algorithms and six disposal ones with parameters variation due to the game of players with each other. Attacking algorithms were varied in 100 sets of parameters, disposal algorithms — in 150 sets. Major result is that using such algorithms the modified “Sea battle” game can be solved — that implies the possibility of finding stable pure and mixed strategies of behaviour, which guarantee the sides gaining optimal results in game theory terms. Moreover, influence of modifying the rules of “Sea battle” game is estimated. Comparison with prior authors’ results on this topic was made. Based on matching the payoff matrices with the statistical analysis, completed earlier, it was found out that standard “Sea battle” game could be represented as a special case of game modifications, observed in this article. The job is important not only because of its applications in war area, but in civil areas as well. Use of article’s results could save resources in exploration, provide an advantage in war conflicts, defend devices under devastating impact.

    Просмотров за год: 18.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.