Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическая модель дифференциации общества с социальной напряженностью
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 999-1012В статье моделируется развитие во времени многопартийной политической системы с учетом социальной напряженности. Предлагается система нелинейных дифференциальных уравнений относительно долей приверженцев партий и дополнительной скалярной переменной, характеризующей величину напряженности в обществе. Изменение доли каждой партии пропорционально текущему значению, умноженному на коэффициент, который состоит из притока беспартийных, перетоков членов из конкурирующих партий и убыли вследствие роста социальной напряженности. Напряженность прирастает пропорционально долям партий и снижается при их отсутствии. Число партий фиксировано, в модели отсутствуют механизмы объединения существующих или рождения новых партий.
Для исследования модели использован подход, основанный на выделении условий, при которых данная задача относится к классу косимметричных систем. Это позволяет проанализировать мультистабильность возможных динамических процессов и их разрушение при нарушении косимметрии. Существование косимметрии для системы дифференциальных уравнений обеспечивается наличием дополнительных связей на параметры, и при этом возможно возникновение непрерывных семейств стационарных и нестационарных решений. Для анализа сценариев нарушения косимметрии применяется подход на основе селективной функции. В случае с одной политической партией мультистабильности нет, каждому набору параметров соответствует только одно устойчивое решение. Для системы из двух партий показано, что возможны два семейства равновесий, а также семейство предельных циклов. Представлены результаты численных экспериментов, демонстрирующие разрушение семейств и реализацию различных сценариев, приводящих к стабилизации политической системы с сосуществованием обеих партий или к исчезновению одной из партий, когда часть населения перестает поддерживать одну из партий и становится безразличной.
Рассматриваемая модель может быть использована для прогнозирования межпартийной борьбы во время предвыборной кампании. В этом случае необходимо учитывать зависимость коэффициентов системы от времени.
Ключевые слова: моделирование социума, напряженность, дифференциальные уравнения, косимметрия, семейства равновесий, предельные циклы, мультистабильност.
Mathematical model of political differentiation under social tension
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 999-1012We comsider a model of the dynamics a political system of several parties, accompanied and controlled by the growth of social tension. A system of nonlinear ordinary differential equations is proposed with respect to fractions and an additional scalar variable characterizing the magnitude of tension in society the change of each party is proportional to the current value multiplied by a coefficient that consists of an influx of novice, a flow from competing parties, and a loss due to the growth of social tension. The change in tension is made up of party contributions and own relaxation. The number of parties is fixed, there are no mechanisms in the model for combining existing or the birth of new parties.
To study of possible scenarios of the dynamic processes of the model we derive an approach based on the selection of conditions under which this problem belongs to the class of cosymmetric systems. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The existence of cosymmetry for a system of differential equations is ensured by the presence of additional constraints on the parameters, and in this case, the emergence of continuous families of stationary and nonstationary solutions is possible. To analyze the scenarios of cosymmetry breaking, an approach based on the selective function is applied. In the case of one political party, there is no multistability, one stable solution corresponds to each set of parameters. For the case of two parties, it is shown that in the system under consideration may have two families of equilibria, as well as a family of limit cycles. The results of numerical experiments demonstrating the destruction of the families and the implementation of various scenarios leading to the stabilization of the political system with the coexistence of both parties or to the disappearance of one of the parties, when part of the population ceases to support one of the parties and becomes indifferent are presented.
This model can be used to predict the inter-party struggle during the election campaign. In this case necessary to take into account the dependence of the coefficients of the system on time.
-
Алгоритмическое построение явных численных схем и визуализация объектов и процессов в вычислительном эксперименте в гидромеханике
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 767-774В работе рассматриваются проектные и поверочные этапы, в разработке сложных вычислительных алгоритмов для создания прямых вычислительных экспериментов в гидромеханике. В моделировании физических полей и нестационарных процессов механики сплошных сред желательно опираться на строгие правила конструирования числовых объектов и связанных с ними вычислительных алгоритмов. Синтез адаптивных числовых объектов и эффективных арифметико-логических операций может послужить оптимизации всей вычислительной задачи, при условии строго следования и соблюдения исходных законов гидромеханики. Возможность использования троичной логики позволяет разрешить некоторые противоречия функционального и декларативного программирования в реализации чисто прикладных задач механики. Аналогичные проектные решения приводят к новым численным схемам тензорной математики, которые позволяют оптимизировать эффективность и обосновывать корректность результатов моделирования. Наиболее важным следствием является возможность использования интерактивных графических методов для визуализации промежуточных результатов моделирования, а также для управляемого воздействия на ход вычислительного эксперимента под контролем инженеров аэрогидромехаников–исследователей.
Ключевые слова: тензорная математика, метод крупных частиц, гидромеханика, вычислительный эксперимент, проектное решение, поверочная задача.
Algorithmic construction of explicit numerical schemes and visualization of objects and processes in the computational experiment in fluid mechanics
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 767-774Просмотров за год: 1.The paper discusses the design and verification stages in the development of complex numerical algorithms to create direct computational experiments in fluid mechanics. The modeling of physical fields and nonstationary processes of continuum mechanics, it is desirable to rely on strict rules of construction the numerical objects and related computational algorithms. Synthesis of adaptive the numerical objects and effective arithmetic- logic operations can serve to optimize the whole computing tasks, provided strict following and compliance with the original of the laws of fluid mechanics. The possibility of using ternary logic enables to resolve some contradictions of functional and declarative programming in the implementation of purely applied problems of mechanics. Similar design decisions lead to new numerical schemes tensor mathematics to help optimize effectiveness and validate correctness the simulation results. The most important consequence is the possibility of using interactive graphical techniques for the visualization of intermediate results of modeling, as well as managed to influence the course of computing experiment under the supervision of engineers aerohydrodynamics– researchers.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"