Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'non-equilibrium':
Найдено статей: 25
  1. Жданова О.Л., Колбина Е.А., Фрисман Е.Я.
    Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735

    Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.

    В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.

    Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.

    Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.

    Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  2. Dhivyadharshini B., Senthamarai R.
    Modeling the indirect impact of rhinoceros beetle control on red palm weevils in coconut plantations
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 737-752

    In this paper, a mathematical model is developed and analyzed to assess the indirect impact of controlling rhinoceros beetles on red palm weevil populations in coconut plantations. The model consists of a system of six non-linear ordinary differential equations (ODEs), capturing the interactions among healthy and infected coconut trees, rhinoceros beetles, red palm weevils, and the oryctes virus. The model ensures biological feasibility through positivity and boundedness analysis. The basic reproduction number $R_0$ is derived using the next-generation matrix method. Both local and global stability of the equilibrium points are analyzed to determine conditions for pest persistence or eradication. Sensitivity analysis identifies the most influential parameters for pest management. Numerical simulations reveal that by effectively controlling the rhinoceros beetle population particularly through infection with the oryctes virus, the spread of the red palm weevil can also be suppressed. This indirect control mechanism helps to protect the coconut tree population more efficiently and supports sustainable pest management in coconut plantations.

    Dhivyadharshini B., Senthamarai R.
    Modeling the indirect impact of rhinoceros beetle control on red palm weevils in coconut plantations
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 737-752

    In this paper, a mathematical model is developed and analyzed to assess the indirect impact of controlling rhinoceros beetles on red palm weevil populations in coconut plantations. The model consists of a system of six non-linear ordinary differential equations (ODEs), capturing the interactions among healthy and infected coconut trees, rhinoceros beetles, red palm weevils, and the oryctes virus. The model ensures biological feasibility through positivity and boundedness analysis. The basic reproduction number $R_0$ is derived using the next-generation matrix method. Both local and global stability of the equilibrium points are analyzed to determine conditions for pest persistence or eradication. Sensitivity analysis identifies the most influential parameters for pest management. Numerical simulations reveal that by effectively controlling the rhinoceros beetle population particularly through infection with the oryctes virus, the spread of the red palm weevil can also be suppressed. This indirect control mechanism helps to protect the coconut tree population more efficiently and supports sustainable pest management in coconut plantations.

  3. Неверова Г.П., Фрисман Е.Я.
    Режимы динамики популяции с неперекрывающимися поколениями с учетом генетической и стадийной структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1165-1190

    В данной работе рассматривается простейшая модель динамики популяции с неперекрывающимися поколениями, в которой плотностно-зависимые факторы лимитируют интенсивность рождаемости. При этом репродуктивный потенциал определяется генетически, а процессы размножения приурочены к определенному годовому сезону. Исследуемая в работе эколого-генетическая модель представляет собой объединение экологической модели динамики лимитированной популяции с неперекрывающимися поколениями и микроэволюционной модели динамики ее генетической структуры для случая, когда адаптивное разнообразие репродуктивных возможностей в популяции определяется одним аутосомным диаллельным локусом с аллеломорфами $А$ и $а$. В ходе исследования данной модели показано, что генетический состав популяции (а именно, будет ли она полиморфной или мономорфной) определяется значениями репродуктивных потенциалов гетерозиготы и гомозигот. При этом режимы динамики численности популяции определяются величиной среднего репродуктивного потенциала зрелых особей и интенсивностью процессов саморегуляции. В частности, показано, что эволюционный рост среднего значения репродуктивного потенциала при плотностной регуляции рождаемости приводит к дестабилизации динамики численности возрастных групп. В то время как интенсивность процессов саморегуляции определяет характер возникающих колебаний, поскольку от количественной оценки именно этого фактора зависит сценарий потери устойчивости равновесных состояний. Показано, что закономерности возникновения и эволюции циклических режимов динамики в большой степени определяются особенностями жизненного цикла особей, составляющих популяцию. Именно жизненный цикл определяет наличие изолированных субпопуляций разных лет, что, в свою очередь, приводит к возможности независимой микроэволюции этих субпопуляций и возникновения сложных сценариев динамики как численности, так и генетической структуры. Закрепление разных адаптивных мутаций постепенно приведет к генетической (а возможно, и морфологической) дифференциации и к различиям в средних репродуктивных потенциалах субпопуляций и достижению ими разного равновесного уровня численности. Дальнейший эволюционный рост репродуктивных потенциалов экологически лимитированных субпопуляций приводит к колебаниям их численности, которые могут отличаться не только амплитудой, но и фазой. Обнаруженные в предложенной модели сценарии микроэволюции генетического состава популяции, связанные с колебаниями численности, вполне согласуются с результатами исследований популяции тихоокеанской горбуши, которая демонстрирует не только колебания численности, но и наличие генетически дифференцированных субпопуляций смежных поколений.

    Neverova G.P., Frisman E.Y.
    Dynamics regimes of population with non-overlapping generations taking into account genetic and stage structures
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1165-1190

    This paper studies a model of a population with non-overlapping generations and density-dependent regulation of birth rate. The population breeds seasonally, and its reproductive potential is determined genetically. The model proposed combines an ecological dynamic model of a limited population with non-overlapping generations and microevolutionary model of its genetic structure dynamics for the case when adaptive trait of birth rate controlled by a single diallelic autosomal locus with allelomorphs A and a. The study showed the genetic composition of the population, namely, will it be polymorphic or monomorphic, is mainly determined by the values of the reproductive potentials of heterozygote and homozygotes. Moreover, the average reproductive potential of mature individuals and intensity of self-regulation processes determine population dynamics. In particularly, increasing the average value of the reproductive potential leads to destabilization of the dynamics of age group sizes. The intensity of self-regulation processes determines the nature of emerging oscillations, since scenario of stability loss of fixed points depends on the values of this parameter. It is shown that patterns of occurrence and evolution of cyclic dynamics regimes are mainly determined by the features of life cycle of individuals in population. The life cycle leading to existence of non-overlapping generation gives isolated subpopulations in different years, which results in the possibility of independent microevolution of these subpopulations and, as a result, the complex dynamics emergence of both stage structure and genetic one. Fixing various adaptive mutations will gradually lead to genetic (and possibly morphological) differentiation and to differences in the average reproductive potentials of subpopulations that give different values of equilibrium subpopulation sizes. Further evolutionary growth of reproductive potentials of limited subpopulations leads to their number fluctuations which can differ in both amplitude and phase.

  4. Малков С.Ю., Шпырко О.А.
    Особенности социальных взаимодействий: базовая модель
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1673-1693

    В работе рассматриваются базовая модель конкурентных взаимодействий и ее использование для анализа и описания социальных процессов. Особенностью модели является то, что она описывает взаимодействие нескольких конкурирующих акторов, при этом акторы могут варьировать стратегию своих действий, в частности, образовывать коалиции для совместного противодействия общему противнику.

    В результате моделирования выявлены различные режимы конкурентного взаимодействия, проведена их классификация, описаны их особенности. В ходе исследования уделено внимание так называемым негрубым (по А.А. Андронову) случаям реализации конкурентного взаимодействия, которые до сих пор редко рассматривались в научной литературе, но зато достаточно часто встречаются в реальной жизни. Сиспо льзованием базовой математической модели рассмотрены условия реализации различных режимов конкурентных взаимодействий, определены условия перехода от одних режимов к другим, приведены примеры реализации этих режимов в экономике, социальной и политической жизни.

    Показано, что при относительно невысоком уровне конкуренции, носящей неантагонистический характер, конкуренция может приводить к повышению активности взаимодействующих акторов и к общему экономическому росту. Причем при наличии расширяющихся ресурсных возможностей (до тех пор, пока такие возможности сохраняются) данный рост может иметь гиперболический характер. При снижении ресурсных возможностей и усилении конкуренции происходит переход к колебательному режиму, когда более слабые акторы объединяются для совместного противодействия более сильным. При дальнейшем снижении ресурсных возможностей и усилении конкуренции происходит переход к формированию устойчивых иерархических структур. При этом модель показывает, что в определенный момент происходит потеря устойчивости, система становится негрубой (по А.А. Андронову) и чувствительной к флуктуациям изменений параметров. В результате сложившиеся иерархии могут разрушиться и замениться на новые. При дальнейшем повышении интенсивности конкуренции происходит полное подавление актором-лидером своих оппонентов и установление монополизма.

    Приведены примеры из экономической, социальной, политической жизни, иллюстрирующие закономерности, выявленные на основе моделирования с использованием базовой модели конкуренции. Полученные результаты могут быть использованы при анализе, моделировании и прогнозировании социально-экономических и политических процессов.

    Malkov S.Yu., Shpyrko O.A.
    Features of social interactions: the basic model
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1673-1693

    The paper considers the basic model of competitive interactions and its use for the analysis and description of social processes. The peculiarity of the model is that it describes the interaction of several competing actors, while actors can vary the strategy of their actions, in particular, form coalitions to jointly counter a common enemy. As a result of modeling, various modes of competitive interaction were identified, their classification was conducted, and their features were described. In the course of the study, the attention is paid to the so-called “rough” (according to A.A. Andronov) cases of the implementation of competitive interaction, which until now have rarely been considered in the scientific literature, but are quite common in real life. Using a basic mathematical model, the conditions for the implementation of various modes of competitive interactions are considered, the conditions for the transition from one mode to another are determined, examples of the implementation of these modes in the economy, social and political life are given. It is shown that with a relatively low level of competition, which is non-antagonistic in nature, competition can lead to an increase in the activity of interacting actors and to overall economic growth. Moreover, in the presence of expanding resource opportunities (as long as such opportunities remain), this growth may have a hyperbolic character. With a decrease in resource capabilities and increased competition, there is a transition to an oscillatory mode, when weaker actors unite to jointly counteract stronger ones. With a further decrease in resource opportunities and increased competition, there is a transition to the formation of stable hierarchical structures. At the same time, the model shows that at a certain moment there is a loss of stability, the system becomes “rough” according to A.A. Andronov and sensitive to fluctuations in parameter changes. As a result, the existing hierarchies may collapse and be replaced by new ones. With a further increase in the intensity of competition, the actor-leader completely suppresses his opponents and establishes monopolism. Examples from economic, social, and political life are given, illustrating the patterns identified on the basis of modeling using the basic model of competition. The obtained results can be used in the analysis, modeling and forecasting of socioeconomic and political processes.

  5. Жданова О.Л., Неверова Г.П., Фрисман Е.Я.
    Динамика планктонного сообщества с учетом трофических характеристик зоопланктона
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 525-554

    Предложена четырехкомпонентная модель планктонного сообщества с дискретным временем, учитывающая конкурентные взаимоотношения между разными группами фитопланктона и трофические характеристики зоопланктона: рассматривается деление зоопланктона на хищный и нехищный типы. Изъятие нехищного зоопланктона хищным явно представлено в модели. Нехищный зоопланктон питается фитопланктоном, включающим два конкурирующих компонента: токсичный и нетоксичный тип, при этом последний пригоден в пищу для зоопланктона. Модель двух связанных уравнений Рикера, ориентированная на описание динамики конкурентного сообщества, используется для описания взаимодействия двух типов фитопланктона и позволяет неявно учитывать ограничение роста биомассы каждого из компонентов-конкурентов доступностью внешних ресурсов. Изъятие жертв хищниками описывается трофической функцией Холлинга типа II с учетом насыщения хищника.

    Анализ сценариев перехода от стационарной динамики к колебаниям численности сообщества показал, что потеря устойчивости нетривиального равновесия, соответствующего существованию полного сообщества, может происходить как через каскад бифуркаций удвоения периода, так и бифуркацию Неймарка – Сакера, ведущую к возникновению квазипериодических колебаний. Предложенная в данной работе модель, являясь достаточно простой, демонстрирует динамику сообщества подобную той, что наблюдается в естественных системах и экспериментах: с отставанием колебаний хищника от жертвы примерно на четверть периода, длиннопериодические противофазные циклы хищника и жертвы, а также скрытые циклы, при которых плотность жертв остается практически постоянной, а плотность хищников флуктуирует, демонстрируя влияние быстрой эволюции, маскирующей трофическое взаимодействие. При этом вариация внутрипопуляционных параметров фито- или зоопланктона может приводить к выраженным изменениям динамического режима в сообществе: резким переходам от регулярной к квазипериодической динамике и далее к точным циклам с небольшим периодом или даже стационарной динамике. Квазипериодическая динамика может возникать при достаточно небольшихск оростях роста фитопланктона, соответствующих стабильной или регулярной динамике сообщества. Смена динамического режима в этой области (переход от регулярной динамики к квазипериодической и наоборот) может происходить за счет вариации начальных условий или внешнего воздействия, изменяющего текущие численности компонентов и смещающего систему в бассейн притяжения другого динамического режима.

    Zhdanova O.L., Neverova G.P., Frisman E.Y.
    Modeling the dynamics of plankton community considering the trophic characteristics of zooplankton
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 525-554

    We propose a four-component model of a plankton community with discrete time. The model considers the competitive relationships of phytoplankton groups exhibited between each other and the trophic characteristics zooplankton displays: it considers the division of zooplankton into predatory and non-predatory components. The model explicitly represents the consumption of non-predatory zooplankton by predatory. Non-predatory zooplankton feeds on phytoplankton, which includes two competing components: toxic and non-toxic types, with the latter being suitable for zooplankton food. A model of two coupled Ricker equations, focused on describing the dynamics of a competitive community, describes the interaction of two phytoplanktons and allows implicitly taking into account the limitation of each of the competing components of biomass growth by the availability of external resources. The model describes the prey consumption by their predators using a Holling type II trophic function, considering predator saturation.

    The analysis of scenarios for the transition from stationary dynamics to fluctuations in the population size of community members showed that the community loses the stability of the non-trivial equilibrium corresponding to the coexistence of the complete community both through a cascade of period-doubling bifurcations and through a Neimark – Sacker bifurcation leading to the emergence of quasi-periodic oscillations. Although quite simple, the model proposed in this work demonstrates dynamics of comunity similar to that natural systems and experiments observe: with a lag of predator oscillations relative to the prey by about a quarter of the period, long-period antiphase cycles of predator and prey, as well as hidden cycles in which the prey density remains almost constant, and the predator density fluctuates, demonstrating the influence fast evolution exhibits that masks the trophic interaction. At the same time, the variation of intra-population parameters of phytoplankton or zooplankton can lead to pronounced changes the community experiences in the dynamic mode: sharp transitions from regular to quasi-periodic dynamics and further to exact cycles with a small period or even stationary dynamics. Quasi-periodic dynamics can arise at sufficiently small phytoplankton growth rates corresponding to stable or regular community dynamics. The change of the dynamic mode in this area (the transition from stable dynamics to quasi-periodic and vice versa) can occur due to the variation of initial conditions or external influence that changes the current abundances of components and shifts the system to the basin of attraction of another dynamic mode.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.