Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'networking':
Найдено статей: 130
  1. Последние годы получило широкое распространение применение нейросетевых моделей для решения задач аэродинамики. В основном такие модели, обученные по некоторому набору ранее полученных решений, позволяют предсказывать решения новых задач и являются в некотором смысле алгоритмами интерполяции. Альтернативным подходом может служить построение нейросетевого оператора, представляющего собой нейросетевую модель, которая воспроизводит поведение численного метода решения задачи. Такая модель позволяет находить решение задачи итерациями. В работе рассматривается вариант построения такого оператора с применением нейронной сети типа UNet с пространственным механизмом внимания для решения задач обтекания на прямоугольной равномерной сетке, общей для обтекаемого тела и поля течения. Для уточнения полученного решения предлагается и исследуется механизм коррекции решения. Анализируется вопрос устойчивости такого алгоритма решения стационарной задачи, проводится сравнение с некоторыми другими вариантами его построения: прием с продвижением вперед (pushforward trick), позиционное встраивание. Рассматривается вопрос выбора набора итераций для формирования обучающей выборки. Оценивается поведение решения при многократном применении нейросетевого оператора.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различными вариантами скругления при фиксированных параметрах набегающего потока с числом Рейнольдса $\text{Re} = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. При этом нейросетевая модель, используемая для построения оператора, имеет общий декодер для обеих компонент скорости. Проводится сравнение полей течения и профилей скорости по нормали и по обводу тела, полученных нейросетевым оператором и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают, что нейросетевой оператор позволяет находить решение с высокой точностью устойчивым образом.

    In recent years, the use of neural network models for solving aerodynamics problems has become widespread. These models, trained on a set of previously obtained solutions, predict solutions to new problems. They are, in essence, interpolation algorithms. An alternative approach is to construct a neural network operator. This is a neural network that reproduces a numerical method used to solve a problem. It allows to find the solution in iterations. The paper considers the construction of such an operator using the UNet neural network with a spatial attention mechanism. It solves flow problems on a rectangular uniform grid that is common to a streamlined body and flow field. A correction mechanism is proposed to clarify the obtained solution. The problem of the stability of such an algorithm for solving a stationary problem is analyzed, and a comparison is made with other variants of its construction, including pushforward trick and positional encoding. The issue of selecting a set of iterations for forming a train dataset is considered, and the behavior of the solution is assessed using repeated use of a neural network operator.

    A demonstration of the method is provided for the case of flow around a rounded plate with a turbulent flow, with various options for rounding, for fixed parameters of the incoming flow, with Reynolds number $\text{Re} = 10^5$ and Mach number $M = 0.15$. Since flows with these parameters of the incoming flow can be considered incompressible, only velocity components are directly studied. At the same time, the neural network model used to construct the operator has a common decoder for both velocity components. Comparison of flow fields and velocity profiles along the normal and outline of the body, obtained using a neural network operator and numerical methods, is carried out. Analysis is performed both on the plate and rounding. Simulation results confirm that the neural network operator allows finding a solution with high accuracy and stability.

  2. Киселев М.В., Урусов А.М., Иваницкий А.Ю.
    Метод адаптивных гауссовых рецептивных полей для спайкового кодирования числовых переменных
    Компьютерные исследования и моделирование, 2025, т. 17, № 3, с. 389-400

    Одна из серьезных проблем, ограничивающих применение импульсных нейронных сетей в прикладных информационных системах, — это кодирование числовых данных в виде последовательностей спайков — бескачественных атомарных объектов, которыми обмениваются нейроны в импульсных нейросетях. Особенно остро эта проблема стоит в задачах обучения с подкреплением агентов, функционирующих в динамичном реальном мире, так как кроме точности кодирования надо учитывать еще его динамические характеристики. Одним из распространенных является метод кодирования гауссовыми рецептивными полями (ГРП). В этом методе одна числовая переменная, подаваемая на вход импульсной нейронной сети, представляется потоками спайков, испускаемых некоторым количеством входных узлов сети. При этом частота генерации спайков каждым входным узлом отражает близость текущего значения этой переменой к значению — центру рецептивного поля, соответствующего данному входному узлу. В стандартном методе ГРП центры рецептивных полей расположены эквидистантно. Это оказывается неэффективным в случае очень неравномерного распределения кодируемой величины. В настоящей работе предлагается усовершенствование этого метода, основанное на адаптивном выборе центров рецептивных полей и вычислении частот потоков спайков. Производится сравнение предлагаемого усовершенствованного метода ГРП с его стандартным вариантом с точки зрения объема сохраняемой при кодировании информации и с точки зрения точности классификационной модели, построенной на закодированных в виде спайков данных. Доля сохраняемой при спайковом кодировании информации для стандартного и адаптивного ГРП оценивается с помощью процедуры прямого и обратного кодирования большой выборки числовых значений из треугольного распределения вероятности и сравнения числа совпадающих бит в исходной и восстановленной выборке. Сравнение на основе точности классификации проводилось на задаче оценки текущего состояния, возникающей при реализации обучения с подкреплением. При этом классификационные модели строились тремя принципиально различными алгоритмами машинного обучения — алгоритмом ближайших соседей, случайным лесом решений и многослойным персептроном. В статье демонстрируется преимущество предложенного нами метода во всех проведенных тестах.

    Kiselev M.V., Urusov A.M., Ivanitsky A.Y.
    The adaptive Gaussian receptive fields for spiking encoding of numeric variables
    Computer Research and Modeling, 2025, v. 17, no. 3, pp. 389-400

    Conversion of numeric data to the spiking form and information losses in this process are serious problems limiting usage of spiking neural networks in applied informational systems. While physical values are represented by numbers, internal representation of information inside spiking neural networks is based on spikes — elementary objects emitted and processed by neurons. This problem is especially hard in the reinforcement learning applications where an agent should learn to behave in the dynamic real world because beside the accuracy of the encoding method, its dynamic characteristics should be considered as well. The encoding algorithm based on the Gaussian receptive fields (GRF) is frequently used. In this method, one numeric variable fed to the network is represented by spike streams emitted by a certain set of network input nodes. The spike frequency in each stream is determined by proximity of the current variable value to the center of the receptive field corresponding to the given input node. In the standard GRF algorithm, the receptive field centers are placed equidistantly. However, it is inefficient in the case of very uneven distribution of the variable encoded. In the present paper, an improved version of this method is proposed which is based on adaptive selection of the Gaussian centers and spike stream frequencies. This improved GRF algorithm is compared with its standard version in terms of amount of information lost in the coding process and of accuracy of classification models built on spike-encoded data. The fraction of information retained in the process of the standard and adaptive GRF encoding is estimated using the direct and reverse encoding procedures applied to a large sample from the triangular probability distribution and counting coinciding bits in the original and restored samples. The comparison based on classification was performed on a task of evaluation of current state in reinforcement learning. For this purpose, the classification models were created by machine learning algorithms of very different nature — nearest neighbors algorithm, random forest and multi-layer perceptron. Superiority of our approach is demonstrated on all these tests.

  3. Муравлев В.И., Браже А.Р.
    Обесшумливание данных динамической флуоресцентной микроскопии при помощи двухэтапного HOSVD-разложения
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 529-542

    Как правило, данные конфокальной и многофотонной лазерной сканирующей микроскопии страдают от низкого уровня полезного сигнала и высокого вклада дробового шума, связанного со стохастическим характером испускания фотонов флуорофором. Это осложняет задачу подавления шума и выделения полезного сигнала в таких данных. В настоящее время популярны нейросетевые алгоритмы улучшения изображений, однако они часто представляют собой «черный ящик» и требуют длительного обучения на конкретных наборах данных. В работе предлагается алгоритм подавления шума для данных динамической флуоресцентной микроскопии, опирающийся на наличие пространственно-временных локальных корреляций в полезном сигнале и на отсутствие пространственных корреляций в шумовой компоненте. Сингулярное разложение матриц (SVD), производящее спектральное разложение матрицы ковариации, — распространенный способ низкоранговой аппроксимации двумерных массивов, концентрирующий скоррелированный сигнал в нескольких первых компонентах разложения. Однако данные динамической микроскопии представляют собой трехмерные массивы или тензоры большей размерности, поэтому использование тензорных разложений потенциально может улучшить результат подавления шума по сравнению с обычным SVD. В основе алгоритма — двухэтапное применение усеченного сингулярного разложения высшего порядка (HOSVD) с введением порога для коэффициентов и последующим обратным преобразованием, сначала для локальных трехмерных окон в пространстве TXY (3D-HOSVD), а затем для пространственно объединенных групп трехмерных окон (4D-HOSVD). Для валидации алгоритма используются синтетические данные кальциевой сигнализации в астроцитах, в которых концентрация кальция транслируется в сигнал флуоресценции, значения которого в каждом кадре и каждом пикселе затем служат математическим ожиданием и дисперсией для сэмплирования случайной величины из непрерывного аналога пуассоновского распределения. Проведен анализ чувствительности алгоритма от параметров понижения ранга вдоль размерности временных компонент и группового ранга, длины локального окна и порога коэффициентов разложения. Несмотря на наличие мультипликативного шума, предлагаемый алгоритм демонстрирует значительное улучшение анализируемого сигнала, увеличивая соотношение «сигнал/шум» (PSNR) более чем на 20 дБ. Данный метод не опирается на предположения относительно разреженности или гладкости сигнала и может быть использован в качестве одного из этапов обработки данных динамической флуоресцентной микроскопии для самых различных типов данных.

    Muravlev V.I., Brazhe A.R.
    Denoising fluorescent imaging data with two-step truncated HOSVD
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 529-542

    Fluorescent imaging data are currently widely used in neuroscience and other fields. Genetically encoded sensors, based on fluorescent proteins, provide a wide inventory enabling scientiests to image virtually any process in a living cell and extracellular environment. However, especially due to the need for fast scanning, miniaturization, etc, the imaging data can be severly corrupred with multiplicative heteroscedactic noise, reflecting stochastic nature of photon emission and photomultiplier detectors. Deep learning architectures demonstrate outstanding performance in image segmentation and denoising, however they can require large clean datasets for training, and the actual data transformation is not evident from the network architecture and weight composition. On the other hand, some classical data transforms can provide for similar performance in combination with more clear insight in why and how it works. Here we propose an algorithm for denoising fluorescent dynamical imaging data, which is based on multilinear higher-order singular value decomposition (HOSVD) with optional truncation in rank along each axis and thresholding of the tensor of decomposition coefficients. In parallel, we propose a convenient paradigm for validation of the algorithm performance, based on simulated flurescent data, resulting from biophysical modeling of calcium dynamics in spatially resolved realistic 3D astrocyte templates. This paradigm is convenient in that it allows to vary noise level and its resemblance of the Gaussian noise and that it provides ground truth fluorescent signal that can be used to validate denoising algorithms. The proposed denoising method employs truncated HOSVD twice: first, narrow 3D patches, spanning the whole recording, are processed (local 3D-HOSVD stage), second, 4D groups of 3D patches are collaboratively processed (non-local, 4D-HOSVD stage). The effect of the first pass is twofold: first, a significant part of noise is removed at this stage, second, noise distribution is transformed to be more Gaussian-like due to linear combination of multiple samples in the singular vectors. The effect of the second stage is to further improve SNR. We perform parameter tuning of the second stage to find optimal parameter combination for denoising.

  4. Евин И.А., Кобляков А.А., Савриков Д.В., Шувалов Н.Д.
    Когнитивные сети
    Компьютерные исследования и моделирование, 2011, т. 3, № 3, с. 231-239

    Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.

    Yevin I.A., Koblyakov A.A., Savricov D.V., Shuvalov N.D.
    Cognitive Networks
    Computer Research and Modeling, 2011, v. 3, no. 3, pp. 231-239

    Traditional classification of real complex networks on biological, technological and social is incomplete, as there is a huge variety of artworks, which structure also can be presented in the form of networks. In this paper the review of researches of the complex networks, modeling some literary, musical and painting works is given. Corresponding networks are offered for naming cognitive networks. The possible directions of studying of such networks are discussed.

    Просмотров за год: 6. Цитирований: 16 (РИНЦ).
  5. Билятдинов К.З., Досиков В.С., Меняйло В.В.
    Совершенствование метода парных сравнений для реализации в компьютерных программах, применяемых при оценке качества технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1125-1135

    Представлен усовершенствованный метод парных сравнений, в котором посредством табличных форм систематизированы правила логических выводов при сравнении технических систем и формулы проверочных значений. Для этого сформулированы рациональные правила логических выводов при парном сравнении систем. С целью проверки результатов оценки на непротиворечивость введены понятия количества баллов, набранных одной системой, и коэффициента качества систем, а также разработаны формулы расчетов. Для целей практического использования данного метода при разработке программ для ЭВМ предлагаются формализованные варианты взаимосвязанных таблиц: таблица обработки и систематизации экспертной информации, таблица возможных логических выводов по результатам сравнения заданного количества технических систем и таблица проверочных значений при использовании метода парных сравнений при оценке качества определенного количества технических систем. Таблицы позволяют более рационально организовать процедуры обработки информации и в значительной степени исклю- чить влияние ошибок при вводе данных на результаты оценки качества технических систем. Основной положительный эффект от внедрения усовершенствованного метода парных сравнений состоит в существенном сокращении времени и ресурсов на организацию работы с экспертами, обработку экспертной информации, а также на подготовку и проведение дистанционного опроса экспертов по сети Интернет или локальной вычислительной сети предприятия (организации) за счет рационального использования исходных данных о качестве оцениваемых систем. Предлагаемый усовершенствованный метод реали- зован в программах для ЭВМ, предназначенных для оценки эффективности и устойчивости больших технических систем.

    Biliatdinov K.Z., Dosikov V.S., Meniailo V.V.
    Improvement of the paired comparison method for implementation in computer programs used in assessment of technical systems’ quality
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1125-1135

    The article describes an improved paired comparison method, which systematizes in tables the rules of logical conclusions and formulas of checking indices for comparison of technical systems. To achieve this goal, the authors formulate rational rules of logical conclusions in making a paired comparison of the systems. In addition, for the purpose of consistency check of the results of the assessment, the authors introduce parameters such as «the number of scores gained by one system» and «systems’ quality index»; moreover, they design corresponding calculation formulas. For the purposes of practical application of this method to design computer programs, the authors propose to use formalized variants of interconnected tables: a table for processing and systematization of expert information, a table of possible logical conclusions based on the results of comparison of a set number of technical systems and a table of check values in the paired comparison method used in quality assessment of a definite number of technical systems. These tables allow one to organize procedures of the information processing in a more rational way and to predominantly exclude the influence of mistakes on the results of quality assessment of technical systems at the stage of data input. The main positive effect from the implementation of the paired comparison method is observed in a considerable reduction of time and resources needed to organize experts work, process expert information, and to prepare and conduct distant interviews with experts (on the Internet or a local computer network of an organization). This effect is achieved by a rational use of input data of the quality of the systems to be assessed. The proposed method is applied to computer programs used in assessing the effectiveness and stability of large technical systems.

  6. Алкуса М.С., Гасников А.В., Двуреченский П.Е., Садиев А.А., Разук Л.Я.
    Подход к решению невыпуклой равномерно вогнутой седловой задачи со структурой
    Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 225-237

    В последнее время седловым задачам уделяется большое внимание благодаря их мощным возможностям моделирования для множества задач из различных областей. Приложения этих задач встречаются в многочисленных современных прикладных областях, таких как робастная оптимизация, распределенная оптимизация, теория игр и~приложения машинного обучения, такие как, например, минимизация эмпирического риска или обучение генеративно-состязательных сетей. Поэтому многие исследователи активно работают над разработкой численных методов для решения седловых задач в самых разных предположениях. Данная статья посвящена разработке численного метода решения седловых задач в невыпуклой равномерно вогнутой постановке. В этой постановке считается, что по группе прямых переменных целевая функция может быть невыпуклой, а по группе двойственных переменных задача является равномерно вогнутой (это понятие обобщает понятие сильной вогнутости). Был изучен более общий класс седловых задач со сложной композитной структурой и гёльдерово непрерывными производными высшего порядка. Для решения рассматриваемой задачи был предложен подход, при котором мы сводим задачу к комбинации двух вспомогательных оптимизационных задач отдельно для каждой группы переменных: внешней задачи минимизации и~внутренней задачи максимизации. Для решения внешней задачи минимизации мы используем адаптивный градиентный метод, который применим для невыпуклых задач, а также работает с неточным оракулом, который генерируется путем неточного решения внутренней задачи максимизации. Для решения внутренней задачи максимизации мы используем обобщенный ускоренный метод с рестартами, который представляет собой метод, объединяющий методы ускорения высокого порядка для минимизации выпуклой функции, имеющей гёльдерово непрерывные производные высшего порядка. Важной компонентой проведенного анализа сложности предлагаемого алгоритма является разделение оракульных сложностей на число вызовов оракула первого порядка для внешней задачи минимизации и оракула более высокого порядка для внутренней задачи максимизации. Более того, оценивается сложность всего предлагаемого подхода.

    Alkousa M.S., Gasnikov A.V., Dvurechensky P.E., Sadiev A.A., Razouk L.Ya.
    An approach for the nonconvex uniformly concave structured saddle point problem
    Computer Research and Modeling, 2022, v. 14, no. 2, pp. 225-237

    Recently, saddle point problems have received much attention due to their powerful modeling capability for a lot of problems from diverse domains. Applications of these problems occur in many applied areas, such as robust optimization, distributed optimization, game theory, and many applications in machine learning such as empirical risk minimization and generative adversarial networks training. Therefore, many researchers have actively worked on developing numerical methods for solving saddle point problems in many different settings. This paper is devoted to developing a numerical method for solving saddle point problems in the nonconvex uniformly-concave setting. We study a general class of saddle point problems with composite structure and H\"older-continuous higher-order derivatives. To solve the problem under consideration, we propose an approach in which we reduce the problem to a combination of two auxiliary optimization problems separately for each group of variables, the outer minimization problem w.r.t. primal variables, and the inner maximization problem w.r.t the dual variables. For solving the outer minimization problem, we use the Adaptive Gradient Method, which is applicable for nonconvex problems and also works with an inexact oracle that is generated by approximately solving the inner problem. For solving the inner maximization problem, we use the Restarted Unified Acceleration Framework, which is a framework that unifies the high-order acceleration methods for minimizing a convex function that has H\"older-continuous higher-order derivatives. Separate complexity bounds are provided for the number of calls to the first-order oracles for the outer minimization problem and higher-order oracles for the inner maximization problem. Moreover, the complexity of the whole proposed approach is then estimated.

  7. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

    Reshitko M.A., Usov A.B.
    Neural network methods for optimal control problems
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 539-557

    In this study we discuss methods to solve optimal control problems based on neural network techniques. We study hierarchical dynamical two-level system for surface water quality control. The system consists of a supervisor (government) and a few agents (enterprises). We consider this problem from the point of agents. In this case we solve optimal control problem with constraints. To solve this problem, we use Pontryagin’s maximum principle, with which we obtain optimality conditions. To solve emerging ODEs, we use feedforward neural network. We provide a review of existing techniques to study such problems and a review of neural network’s training methods. To estimate the error of numerical solution, we propose to use defect analysis method, adapted for neural networks. This allows one to get quantitative error estimations of numerical solution. We provide examples of our method’s usage for solving synthetic problem and a surface water quality control model. We compare the results of this examples with known solution (when provided) and the results of shooting method. In all cases the errors, estimated by our method are of the same order as the errors compared with known solution. Moreover, we study surface water quality control problem when no solutions is provided by other methods. This happens because of relatively large time interval and/or the case of several agents. In the latter case we seek Nash equilibrium between agents. Thus, in this study we show the ability of neural networks to solve various problems including optimal control problems and differential games and we show the ability of quantitative estimation of an error. From the numerical results we conclude that the presence of the supervisor is necessary for achieving the sustainable development.

  8. Степанцов М.Е.
    О возможной модификации дискретной математической модели динамического развития транспортной сети
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 395-401

    Целью данной работы явилось исследование дискретной математической модели динамического развития транспортной сети, ранее разработанной с участием автора. В ходе такого исследования были выявлены недостатки модели, рассмотрены пути устранения этих недостатков, после чего построена новая версия модели. На основе этой новой модели были созданы имитационные схемы для проведения пробных расчетов, аналогичных тем, какие использовались для тестирования исходной модели. Проведен сравнительный анализ результатов тестовых расчетов на основе новой и исходной моделей.

    Stepantsov M.Y.
    A possible modification of the discrete mathematical model of transport network dynamics
    Computer Research and Modeling, 2013, v. 5, no. 3, pp. 395-401

    The aim of this article is to study the discrete mathematical model of transport network dynamics, recently built by author. The study showed some drawbacks of the basic model and the ways of overcoming these drawbacks, and an improved version of the model was proposed. Simulation systems, created on the basis of this new model were used to do test calculations similar to those previously done with the help of the basic model. The results of these calculations with both models are compared.

    Просмотров за год: 5. Цитирований: 5 (РИНЦ).
  9. В статье сформулирован обобщенный подход к выбору значений структурных параметров искусственной нейронной сети (ИНС) и объема обучающий выборки, основанный на принципе минимизации количества элементов структуры ИНС и объема обучающей выборки при ограничении на значение показателя качества работы нейросетевой модели динамики объекта. Реализован алгоритм выбора структурных параметров ИНС и построения нейросетевой модели.
    Проведена серия вычислительных экспериментов, демонстрирующая применимость алгоритма для построения моделей динамических объектов, в основе которых лежит нелинейная автокорреляционная нейронная сеть.

    Shumixin A.G., Boyarshinova A.S.
    Algorithm of artificial neural network architecture and training set size configuration within approximation of dynamic object behavior
    Computer Research and Modeling, 2015, v. 7, no. 2, pp. 243-251

    The article presents an approach to configuration of an artificial neural network architecture and a training set size. Configuration is based on parameter minimization with constraints specifying neural network model quality criteria. The algorithm of artificial neural network architecture and training set size configuration is applied to dynamic object artificial neural network approximation.
    Series of computational experiments were performed. The method is applicable to construction of dynamic object models based on non-linear autocorrelation neural networks.

    Просмотров за год: 2. Цитирований: 8 (РИНЦ).
  10. Алексеенко А.Е., Холодов Я.А., Холодов А.С., Горева А.И., Васильев М.О., Чехович Ю.В., Мишин В.Д., Старожилец В.М.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть I
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1185-1203

    В данной работе исследуется проблема унификации процедуры разработки и калибровки математической модели движения транспортного потока на автомобильной многополосной дороге в городских условиях. При этом использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений (для плотности и скорости потока) второго порядка. Полученная модель замыкается через уравнение зависимости интенсивности транспортного потока от его плотности, получаемое эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов и автомобильных GPS-треков. Проверка работоспособности разработанной нами модели и методики калибровки проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, таких как моделирование движения трафика на заданном участке городской транспортной сети г. Москвы.

    Alekseenko A.E., Kholodov Y.A., Kholodov A.S., Goreva A.I., Vasilev M.O., Chekhovich Y.V., Mishin V.D., Starozhilets V.M.
    Development, calibration and verification of mathematical model for multilane urban road traffic flow. Part I
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1185-1203

    In this paper, we propose the unified procedure for the development and calibration of mathematical model for multilane urban road traffic flow. We use macroscopic approach, describing traffic flow with the system of second-order nonlinear hyperbolic equations (for traffic density and velocity). We close the resulting model with the equation of vehicle flow as a function of density, obtained empirically for each segment of road network using data from traffic detectors and vehicles’ GPS tracks. We verify the developed new model and calibration methods by using it to model segment of Moscows Ring Road.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.