Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Транспортные данные для моделирования эффективной транспортной среды в Республике Татарстан
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 395-404Автоматизированные системы мониторинга городского трафика широко используются для решения различных задач в интеллектуальных транспортных системах различных регионов. Такие системы включают комплексы фотовидеофиксации, видеонаблюдения, управления дорожным трафиком и т. д. Для эффективного управления транспортным потоком и своевременного реагирования на дорожные инциденты необходимы непрерывный сбор и анализ потока информации, поступающей с данных комплексов, формирование прогнозных значений для дальнейшего выявления аномалий. При этом для повышения качества прогноза требуется агрегирование данных, поступающих из различных источников. Это позволяет уменьшить ошибку прогноза, связанную с ошибками и пропусками в исходных данных. В данной статье реализован подход к краткосрочному и среднесрочному прогнозированию транспортных потоков (5, 10, 15 минут) на основе агрегирования данных, поступающих от комплексов фотовидеофиксации и систем видеонаблюдения. Реализован прогноз с использованием различных архитектур рекуррентных нейронных сетей: LSTM, GRU, двунаправленной LSTM с одним и двумя слоями. Работа двунаправленной LSTM исследовалась для 64 и 128 нейронов в каждом слое. Исследовалась ошибка прогноза для различных размеров входного окна (1, 4, 12, 24, 48). Для оценки прогнозной ошибки использована метрика RMSE. В ходе проведенных исследований получено, что наименьшая ошибка прогноза (0.032405) достигается при использовании однослойной рекуррентной нейронной сети LSTM с 64 нейронами и размером входного окна, равном 24.
Ключевые слова: транспортное моделирование, фотовидеофиксация, прогнозирование транспортного потока.
Modeling of the effective environment in the Republic of Tatarstan using transport data
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 395-404Automated urban traffic monitoring systems are widely used to solve various tasks in intelligent transport systems of different regions. They include video enforcement, video surveillance, traffic management system, etc. Effective traffic management and rapid response to traffic incidents require continuous monitoring and analysis of information from these complexes, as well as time series forecasting for further anomaly detection in traffic flow. To increase the forecasting quality, data fusion from different sources is needed. It will reduce the forecasting error, related to possible incorrect values and data gaps. We implemented the approach for short-term and middle-term forecasting of traffic flow (5, 10, 15 min) based on data fusion from video enforcement and video surveillance systems. We made forecasting using different recurrent neural network architectures: LSTM, GRU, and bidirectional LSTM with one and two layers. We investigated the forecasting quality of bidirectional LSTM with 64 and 128 neurons in hidden layers. The input window size (1, 4, 12, 24, 48) was investigated. The RMSE value was used as a forecasting error. We got minimum RMSE = 0.032405 for basic LSTM with 64 neurons in the hidden layer and window size = 24.
-
Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.
Ключевые слова: мультиномиальный логит, модель дискретного выбора, модальный выбор, энтропийная модель.
Cloud interpretation of the entropy model for calculating the trip matrix
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 89-103As the population of cities grows, the need to plan for the development of transport infrastructure becomes more acute. For this purpose, transport modeling packages are created. These packages usually contain a set of convex optimization problems, the iterative solution of which leads to the desired equilibrium distribution of flows along the paths. One of the directions for the development of transport modeling is the construction of more accurate generalized models that take into account different types of passengers, their travel purposes, as well as the specifics of personal and public modes of transport that agents can use. Another important direction of transport models development is to improve the efficiency of the calculations performed. Since, due to the large dimension of modern transport networks, the search for a numerical solution to the problem of equilibrium distribution of flows along the paths is quite expensive. The iterative nature of the entire solution process only makes this worse. One of the approaches leading to a reduction in the number of calculations performed is the construction of consistent models that allow to combine the blocks of a 4-stage model into a single optimization problem. This makes it possible to eliminate the iterative running of blocks, moving from solving a separate optimization problem at each stage to some general problem. Early work has proven that such approaches provide equivalent solutions. However, it is worth considering the validity and interpretability of these methods. The purpose of this article is to substantiate a single problem, that combines both the calculation of the trip matrix and the modal choice, for the generalized case when there are different layers of demand, types of agents and classes of vehicles in the transport network. The article provides possible interpretations for the gauge parameters used in the problem, as well as for the dual factors associated with the balance constraints. The authors of the article also show the possibility of combining the considered problem with a block for determining network load into a single optimization problem.
-
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
Ключевые слова: automatic relevance determination, Bayesian deep neural networks, truncated lognormal variational approximation, macroscopic image.
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
-
Особенности применения физически информированных нейронных сетей для решения обыкновенных дифференциальных уравнений
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1621-1636Рассматривается применение физически информированных нейронных сетей с использованием многослойных персептронов для решения задач Коши, в которых правые части уравнения являются непрерывными монотонно возрастающими, убывающими или осциллирующими функциями. С помощью вычислительных экспериментов изучено влияние метода построения приближенного нейросетевого решения, структуры нейронной сети, алгоритмов оптимизации и средств программной реализации на процесс обучения и точность полученного решения. Выполнен анализ эффективности работы наиболее часто используемых библиотек машинного обучения при разработке программ на языках программирования Python и C#. Показано, что применение языка C# позволяет сократить время обучения нейросетей на 20–40%. Выбор различных функций активации влияет на процесс обучения и точность приближенного решения. Наиболее эффективными в рассматриваемых задачах являются сигмоида и гиперболический тангенс. Минимум функции потерь достигается при определенном количестве нейронов скрытого слоя однослойной нейронной сети за фиксированное время обучения нейросетевой модели, причем усложнение структуры сети за счет увеличения числа нейронов не приводит к улучшению результатов обучения. При этом величина шага сетки между точками обучающей выборки, обеспечивающей минимум функции потерь, в рассмотренных задачах Коши практически одинакова. Кроме того, при обучении однослойных нейронных сетей наиболее эффективными для решения задач оптимизации являются метод Adam и его модификации. Дополнительно рассмотрено применение двух- и трех-слойных нейронных сетей. Показано, что в этих случаях целесообразно использовать алгоритм LBFGS, который по сравнению с методом Adam в ряде случаев требует на порядок меньшего времени обучения при достижении одинакового порядка точности. Исследованы также особенности обучения нейронной сети в задачах Коши, в которых решение является осциллирующей функцией с монотонно убывающей амплитудой. Для них необходимо строить нейросетевое решение не с постоянными, а с переменными весовыми коэффициентами, что обеспечивает преимущество такого подхода при обучении в тех узлах, которые расположены вблизи конечной точки интервала решения задачи.
Ключевые слова: обыкновенные дифференциальные уравнения, машинное обучение, физически информированные нейронные сети, численные методы.
Analysis of the physics-informed neural network approach to solving ordinary differential equations
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1621-1636Considered the application of physics-informed neural networks using multi layer perceptrons to solve Cauchy initial value problems in which the right-hand sides of the equation are continuous monotonically increasing, decreasing or oscillating functions. With the use of the computational experiments the influence of the construction of the approximate neural network solution, neural network structure, optimization algorithm and software implementation means on the learning process and the accuracy of the obtained solution is studied. The analysis of the efficiency of the most frequently used machine learning frameworks in software development with the programming languages Python and C# is carried out. It is shown that the use of C# language allows to reduce the time of neural networks training by 20–40%. The choice of different activation functions affects the learning process and the accuracy of the approximate solution. The most effective functions in the considered problems are sigmoid and hyperbolic tangent. The minimum of the loss function is achieved at the certain number of neurons of the hidden layer of a single-layer neural network for a fixed training time of the neural network model. It’s also mentioned that the complication of the network structure increasing the number of neurons does not improve the training results. At the same time, the size of the grid step between the points of the training sample, providing a minimum of the loss function, is almost the same for the considered Cauchy problems. Training single-layer neural networks, the Adam method and its modifications are the most effective to solve the optimization problems. Additionally, the application of twoand three-layer neural networks is considered. It is shown that in these cases it is reasonable to use the LBFGS algorithm, which, in comparison with the Adam method, in some cases requires much shorter training time achieving the same solution accuracy. The specificity of neural network training for Cauchy problems in which the solution is an oscillating function with monotonically decreasing amplitude is also investigated. For these problems, it is necessary to construct a neural network solution with variable weight coefficient rather than with constant one, which improves the solution in the grid cells located near by the end point of the solution interval.
-
Прогнозирование занятости частотного ресурса в системе когнитивного радио с использованием нейронной сети Колмогорова – Арнольда
Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 109-123Для систем когнитивного радио актуальным является использование эффективных алгоритмов поиска свободных каналов, которые могут быть предоставлены вторичным пользователям. Поэтому данная статья посвящена повышению точности прогнозирования занятости частотного ресурса системы сотовой связи с использованием пространственно-временных карт радиосреды. Формирование карты радиосреды осуществляется для системы сотовой связи четвертого поколения Long-Term Evolution. С учетом этого разработана структура модели, включающая генерацию данных и позволяющая выполнять обучение и тестирование искусственной нейронной сети для прогнозирования занятости частотных ресурсов, представленных в виде содержимого ячеек карты радиосреды. Описана методика оценки точности прогнозирования. Имитационная модель системы сотовой связи реализована в программной среде MatLab. Разработанная модель прогнозирования занятости частотного ресурса реализована на языке программирования Python. Представлена полная файловая структура модели. Эксперименты выполнены с использованием искусственных нейронных сетей на основе архитектур нейронных сетей Long Short-Term Memory и Колмогорова – Арнольда с учетом ее модификации. Установлено, что при равном количестве параметров нейронная сеть Колмогорова – Арнольда обучается быстрее для данной задачи. Полученные результаты исследований свидетельствуют о повышении точности прогнозирования занятости частотного ресурса системы сотовой связи при использовании нейронной сети Колмогорова – Арнольда.
Ключевые слова: система сотовой связи, Long-Term Evolution, Long Short-Term Memory, искусственные нейронные сети.
Prediction of frequency resource occupancy in a cognitive radio system using the Kolmogorov – Arnold neural network
Computer Research and Modeling, 2025, v. 17, no. 1, pp. 109-123For cognitive radio systems, it is important to use efficient algorithms that search for free channels that can be provided to secondary users. Therefore, this paper is devoted to improving the accuracy of prediction frequency resource occupancy of a cellular communication system using spatiotemporal radio environment maps. The formation of a radio environment map is implemented for the fourthgeneration cellular communication system Long-Term Evolution. Taking this into account, a model structure has been developed that includes data generation and allows training and testing of an artificial neural network to predict the occupancy of frequency resources presented as the contents of radio environment map cells. A method for assessing prediction accuracy is described. The simulation model of the cellular communication system is implemented in the MatLab. The developed frequency resource occupancy prediction model is implemented in the Python. The complete file structure of the model is presented. The experiments were performed using artificial neural networks based on the Long Short-Term Memory and Kolmogorov – Arnold neural network architectures, taking into account its modification. It was found that with an equal number of parameters, the Kolmogorov –Arnold neural network learns faster for a given task. The obtained research results indicate an increase in the accuracy of prediction the occupancy of the frequency resource of the cellular communication system when using the Kolmogorov – Arnold neural network.
-
Определение крупных трещин в геологической среде с использованием сверточных нейронных сетей
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 889-901В данной работе рассматривается обратная задача сейсморазведки — определение структуры исследуемой среды по зарегистрированному волновому отклику от нее. В качестве целевого объекта рассматриваются крупные трещины, размеры и положение которых необходимо определить.
Для решения прямой задачи используется численное моделирование сеточно-характеристическим методом. Сеточно-характеристический метод позволяет применять физически обоснованные алгоритмы расчета точек на внешних границах области и контактных границах внутри области интегрирования. Трещина принимается тонкой, для описания трещины используется специальное условие на створках трещины.
Обратная задача решается с помощью сверточных нейронных сетей. Входными данными нейронной сети являются сейсмограммы, интерпретируемые как изображения. Выходными данными являются маски, описывающие среду на структурированной сетке. Каждый элемент такой сетки относится к одному из двух классов: либо элемент сплош- ного геологического массива, либо элемент, через который проходит трещина. Такой подход позволяет рассматривать среду, в которой находится неизвестное наперед количество трещин.
Для обучения нейронной сети использовались исключительно примеры с одной трещиной. Для итогового тестирования обученной сети использовались отдельные примеры с несколькими трещинами, эти примеры никак не были задействованы в ходе обучения. Целью тестирования в таких условиях была проверка, что обученная сеть обладает достаточной общностью, распознает в сигнале признаки наличия трещины и при этомне страдает от переобучения на примерах с единственной трещиной в среде.
В работе показано, что сверточная сеть, обученная на примерах с единичной трещиной, может использоваться для обработки данных с множественными трещинами. Хорошо определяются в том числе небольшие трещины на больших глубинах, если они пространственно разнесены друг от друга на расстояние большее, чемдлина сканирующего импульса. В этом случае на сейсмограмме их волновые отклики хорошо различимы и могут быть интерпретированы нейронной сетью. В случае близко расположенных трещин могут возникать артефакты и ошибки интерпретации. Это связано с тем, что на сейсмограмме волновые отклики близких трещин сливаются, из-за чего нейронная сеть интерпретирует несколько рядом расположенных трещин как одну. Отметим, что подобную ошибку, скорее всего, допустил бы и человек при ручной интерпретации данных. В работе приведены примеры некоторых таких артефактов, искажений и ошибок распознавания.
Ключевые слова: сейсморазведка, сплошная среда, прямая задача, обратная задача, сеточно-характеристический метод, машинное обучение, нейронные сети, сверточные сети.
Detecting large fractures in geological media using convolutional neural networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.
he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.
The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.
The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.
The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.
-
Синхронизация и хаос в сетях связанных отображений в приложении к моделированию сердечной динамики
Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 439-453На основе отображения, построенного путем упрощения и редукции модели Луо–Руди, исследуется динамика ансамблей связанных элементов в приложении к моделированию пространственно-временных процессов в сердечной мышце. В частности, представлены возможности отображения в воспроизведении различных режимов сердечной активности, в том числе возбудимого и осцилляторного режимов. Рассмотрена динамика цепочек и решеток связанных осцилляторных элементов со случайным распределением индивидуальных частот. Обнаружены эффекты кластерной синхронизации и переход к глобальной синхронизации при увеличении силы связи. Проанализировано распространение импульсов по цепочке, а также концентрических и спиральных волн в двумерной решетке связанных отображений, моделирующих динамику возбудимых сред. Изучены характеристики спиральной волны в зависимости от изменения индивидуальных параметров и связи. Проведено исследование смешанных ансамблей, состоящих из возбудимых и осцилляторных элементов с градиентным изменением свойств, в том числе в приложении к задаче описания нормального и патологического характера функционирования синоатриального узла.
Ключевые слова: отображение, возбудимая клетка, осцилляторная клетка, синхронизация, пространственно-временная динамика.
Synchronization and chaos in networks of coupled maps in application to modeling of cardiac dynamics
Computer Research and Modeling, 2011, v. 3, no. 4, pp. 439-453Цитирований: 3 (РИНЦ).The dynamics of coupled elements’ ensembles are investigated in the context of description of spatio-temporal processes in the myocardium. Basic element is map-based model constructed by simplification and reduction of Luo-Rudy model. In particular, capabilities of the model in replication of different regimes of cardiac activity are shown, including excitable and oscillatory regimes. The dynamics of 1D and 2D lattices of coupled oscillatory elements with a random distribution of individual frequencies are considered. Effects of cluster synchronization and transition to global synchronization by increasing of coupling strength are discussed. Impulse propagation in the chain of excitable cells has been observed. Analysis of 2D lattice of excitable elements with target and spiral waves have been made. The characteristics of the spiral wave has been analyzed in depending on the individual parameters of the map and coupling strength between elements of the lattice. A study of mixed ensembles consisting of excitable and oscillatory elements with a gradient changing of the properties have been made, including the task for description of normal and pathological activity of the sinoatrial node.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Ключевые слова: прогнозирование заболеваемости, поточечные оценки, регрессионные модели, АРПСС, скрытые марковские модели, метод аналогий, экспоненциальное сглаживание, SIR, модель Барояна–Рвачева, клеточные автоматы, популяционные модели, агентные модели.
Forecasting methods and models of disease spread
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).
-
Квазиклеточные сети и их приложения в задачах моделирования посетителей объектов массового пребывания людей
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 285-294Рассмотрены вопросы предметной интерпретации квазиклеточных сетей в задачах моделирования потоков людей на различных объектах их массового пребывания. Квазиклеточные сети представляют собой фундаментальные дискретные структуры, не имеющие сигнатуры. Предлагаемый подход позволяет в рамках одной дискретной структуры реализовать микро и макромоделирование потоков людей, а также визуализацию данных. Отдельно рассмотрены интерпретации многосортности потоков в квазиклеточных сетях для случая фанатов на стадионах, а также распространения огня и отравляющих веществ на объектах массового пребывания людей. Подход соответствует указаниям МЧС России от 03.02.2009 г. № 7-3-113.
Ключевые слова: квазиклеточные сети, моделирование, сети, потоки, потоки людей, чрезвычайные ситуации, объекты массового пребывания, стадионы.
Quasicellular networks and their application for simulation of visitor flow in public spaces
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 285-294Problems of application of quasicellular networks for simulation of flows of visitors in different public spaces are considered. Quasicellular networks are basic discrete structures without signature. Proposed approach may be used to create simulations on micro and macro levels. It also may be used for creating geometrical models. There are also multi-flow systems for simulation of sports fans in a sports arena, propagation of fire and poison in public spaces. This approach satisfies the requirements of MOE of Russia № 7-3-113.
Keywords: quasi cellular networks, simulation, flows, networks, flow of people, emergency, public objects, stadium.Просмотров за год: 2. Цитирований: 7 (РИНЦ). -
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Просмотров за год: 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





