Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'methodology':
Найдено статей: 35
  1. Дмитриенко П.В.
    Методика оценки эффективности систем мониторинга вычислительных ресурсов
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 661-668

    В данной статье рассмотрен вклад, вносимый системой мониторинга вычислительных ресурсов в работу распределенной вычислительной системы, и предложена методика оценки этого вклада и эффективности работы системы мониторинга на основе меры определенности состояния подконтрольной системы. Рассмотрено применение этой методики в ходе разработки и развития системы локального мониторинга Центрального информационно-вычислительного комплекса Объединенного института ядерных исследований.

    Dmitrienko P.V.
    Methods of evaluating the effectiveness of systems for computing resources monitoring
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 661-668

    This article discusses the contribution of computing resources monitoring system to the work of a distributed computing system. Method of evaluation of this contribution and performance monitoring system based on measures of certainty the state-controlled system is proposed. The application of this methodology in the design and development of local monitoring of the Central Information and Computing Complex, Joint Institute for Nuclear Research is listed.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. Титлянова А.А.
    Школы по математической биологии 1973–1992 гг.
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 411-422

    В кратком обзоре описаны тематика и выборочные доклады Школ по моделированию сложных биологических систем. Школы явились естественным развитием этого направления науки в нашей стране, местом коллективного мозгового штурма, вдохновляемого такими выдающимися фигурами современности, как А. А. Ляпунов, Н. В. Тимофеев-Ресовский, А. М. Молчанов. На школах в острой дискуссионной форме поднимались общие вопросы методологии математического моделирования в биологии и экологии, обсуждались фундаментальные принципы структурной организации и функции сложных биологических и экологических систем. Школы служили важным примером междисциплинарного взаимодействия ученых разных не только и не столько специальностей, сколько разных мироощущений, подходов и способов отодвигать границу непознанного. Что тем не менее объединяло математиков и биологов, участников школ, так это общее понимание плодотворности данного союза. Доклады, дискуссии, размышления, сохранившиеся в материалах Школ, не потеряли актуальность до сих пор и могут служить определенными ориентирами для современного поколения ученых.

    Titlyanova A.A.
    Schools on mathematical biology 1973–1992
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422

    This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.

    Просмотров за год: 2.
  3. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

    Moiseev N.A., Nazarova D.I., Semina N.S., Maksimov D.A.
    Changepoint detection on financial data using deep learning approach
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575

    The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.

    To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.

    The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.

    As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.

  4. Шатров А.В., Охапкин В.П.
    Оптимальное управление вложением средств банка как фактор экономической стабильности
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 959-967

    В работе представлена модель пополнения банковской ликвидности собственными средствами банков. Дано методологическое обоснование необходимости создания банковских стабилизационных фондов для покрытия убытков в период кризиса в экономике. Приводится эконометрический вывод уравнений описывающих поведение банка в финансовой и операционной деятельности. В соответствии с поставленной целью создания стабилизационного фонда вводится критерий оптимальности осуществляемого управления. На основе полученных уравнений поведения банка, методом динамического программирования выводится вектор оптимальных управлений.

    Shatrov A.V., Okhapkin V.P.
    Optimal control of bank investment as a factorof economic stability
    Computer Research and Modeling, 2012, v. 4, no. 4, pp. 959-967

    This paper presents a model of replenishment of bank liquidity by additional income of banks. Given the methodological basis for the necessity for bank stabilization funds to cover losses during the economy crisis. An econometric derivation of the equations describing the behavior of the bank financial and operating activity performed. In accordance with the purpose of creating a stabilization fund introduces an optimality criterion used controls. Based on the equations of the behavior of the bank by the method of dynamic programming is derived a vector of optimal controls.

    Просмотров за год: 5.
  5. Журавлев Е.Е., Иванов С.В., Каменщиков А.А., Корниенко В.Н., Олейников А.Я., Широбокова Т.Д.
    Особенности методики обеспечения интероперабельности в грид-среде и облачных вычислениях
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 675-682

    Представлена методика обеспечения интероперабельности для Грид-систем и систем облачных вычислений. Методика построена она основе единого подхода к обеспечению интероперабельности для систем широкого класса, предложенного авторами и зафиксированного в национальном стандарте РФ.

    Zhuravlev E.E., Ivanov S.V., Kamenshchikov A.A., Kornienko V.N., Oleynikov A.Ya., Shirobokova T.D.
    Aspects of methodology of ensuring interoperability in the Gridenvironment and cloud computing
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 675-682

    The technique of ensuring of interoperability for Grid-systems and systems of cloud computing is provided. The technique is constructed on a basis of the uniform approach of ensuring interoperability for systems of the wide class offered by authors and recorded in the national Russian Federation standard.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.