Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'mechanical structure':
Найдено статей: 52
  1. Жмуров А.А., Алексеенко А.Е., Барсегов В.А., Кононова О.Г., Холодов Я.А.
    Фазовый переход от α-спиралей к β-листам в суперспиралях фибриллярных белков
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 705-725

    Изучен переход от α-структур к β-структурам под воздействием внешнего механического поля в молекуле фибрина, содержащей суперспирали, и разрешен ландшафт энергии. Проведено детальное теоретическое моделирование отдельных этапов процесса растяжения суперспирального фрагмента. На графиках зависимости силы (F) от растяжения молекулы (X) для тандема из двух симметричных суперспиралей фибрина (длина каждой ∼17 нм) видны три режима механического поведения: (1) линейный (упругий) режим, в котором суперспирали ведут себя как энтропийная пружина (F<100−125 пН и X<7−8 нм), (2) вязкий (пластичный) режим, в котором сила сопротивления молекулы не меняется с увеличением растяжения (F≈150 пН и X≈10−35 нм) и (3) нелинейный режим зависимости F от X (F>175−200 пН и X>40−50 нм). В линейном режиме суперспирали раскручиваются на угол в 2π радиан, но структурные изменения на уровне вторичной структуры не происходят. Вязкий режим сопровождается фазовым переходом от тройных α-спиралей к параллельным β-листам, в результате которого изменяется вторичная структура. Критическое растяжение α-спиралей составляет 0.25 нм на один виток, а характерное изменение энергии — 4.9 ккал/моль. Также были подсчитаны связанные с фазовым переходом изменения во внутренней энергии Δu, энтропии Δs и механической емкости cf из расчета на один виток α-спирали. Подобное динамическое поведение α-спиралей при растяжении белковых филаментов может являться универсальным механизмом регуляции фибриллярных α-спиральных белков в ответ на внешнее силовое воздействие, возникающее в результате действия биологических сил.

    Zhmurov A.A., Alekseenko A.E., Barsegov V.A., Kononova O.G., Kholodov Y.A.
    Phase transition from α-helices to β-sheets in supercoils of fibrillar proteins
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 705-725

    The transition from α-helices to β-strands under external mechanical force in fibrin molecule containing coiled-coils is studied and free energy landscape is resolved. The detailed theoretical modeling of each stage of coiled-coils fragment pulling process was performed. The plots of force (F) as a function of molecule expansion (X) for two symmetrical fibrin coiled-coils (each ∼17 nm in length) show three distinct modes of mechanical behaviour: (1) linear (elastic) mode when coiled-coils behave like entropic springs (F<100−125 pN and X<7−8 nm), (2) viscous (plastic) mode when molecule resistance force does not increase with increase in elongation length (F≈150 pN and X≈10−35 nm) and (3) nonlinear mode (F>175−200 pN and X>40−50 nm). In linear mode the coiled-coils unwind at 2π radian angle, but no structural transition occurs. Viscous mode is characterized by the phase transition from the triple α-spirals to three-stranded parallel β-sheet. The critical tension of α-helices is 0.25 nm per turn, and the characteristic energy change is equal to 4.9 kcal/mol. Changes in internal energy Δu, entropy Δs and force capacity cf per one helical turn for phase transition were also computed. The observed dynamic behavior of α-helices and phase transition from α-helices to β-sheets under tension might represent a universal mechanism of regulation of fibrillar protein structures subject to mechanical stresses due to biological forces.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  2. Лихачев И.В., Галзитская О.В., Балабаев Н.К.
    Исследование механических свойств C-кадгерина методом молекулярной динамики
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735

    В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.

    Lihachev I.V., Galzitskaya O.V., Balabaev N.K.
    Investigation of C-Cadherin mechanical properties by Molecular Dynamics
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735

    The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.

    Просмотров за год: 5.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.