Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.
Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.
Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.
Ключевые слова: гибридный метод крупных частиц, регулирование диссипативных свойств, ударные волны, вихревая структура, неустойчивость на контактных границах.
Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.
The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.
Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.
-
Приложение гибридного метода крупных частиц к расчету взаимодействия ударной волны со слоем газовзвеси
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1323-1338Для модельного неоднородного уравнения переноса с источником выполнен анализ устойчивости линейной гибридной схемы (комбинации противопоточной и центральной аппроксимаций). Получены условия устойчивости, зависящие от параметра гибридности, фактора интенсивности источника (произведения интенсивности на шаг по времени) и весового коэффициента линейной комбинации мощности источника на нижнем и верхнем временном слое. В нелинейном случае для уравнений движения неравновесной по скоростям и температурам газовзвеси расчетным путем подтвержден линейный анализ устойчивости. Установлено, что предельно допустимое число Куранта гибридного метода крупных частиц второго порядка точности по пространству и времени при неявном учете трения и теплообмена между газом и частицами не зависит от фактора интенсивности межфазных взаимодействий, шага расчетной сетки и времен релаксации фаз (K-устойчивость). В традиционном случае явного способа расчета источниковых членов для значений безразмерного фактора интенсивности больше 10 наблюдается катастрофическое (на несколько порядков) снижение предельно допустимого числа Куранта, при котором расчетный шаг по времени становится неприемлемо малым.
На основе базовых соотношений распада разрыва в равновесной гетерогенной среде получено асимптотически точное автомодельное решение задачи взаимодействия ударной волны со слоем газовзвеси, к которому сходится численное решение двухскоростной двухтемпературной динамики газовзвеси при уменьшении размеровди сперсных частиц.
Изучены динамика движения скачка уплотнения в газе и его взаимодействия с ограниченным слоем газовзвеси для различных размеров дисперсных частиц: 0.1, 2 и 20 мкм. Задача характеризуется двумя распадами разрывов: отраженной и преломленной ударными волнами на левой границе слоя, отраженной волной разрежения и прошедшим скачком уплотнения на правой контактной границе. Обсуждено влияние релаксационных процессов (безразмерных времен релаксации фаз) на характер течения газовзвеси. Для мелких частиц времена выравнивания скоростей и температур фаз малы, а зоны релаксации являются подсеточными. Численное решение в характерных точках с относительной точностью $O\, (10^{−4})$ сходится к автомодельным решениям.
Ключевые слова: гибридный метод крупных частиц, устойчивость, газовзвесь, релаксация, жесткость, автомодельное решение.
Application of a hybrid large-particle method to the computation of the interaction of a shock wave with a gas suspension layer
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1323-1338For a non-homogeneous model transport equation with source terms, the stability analysis of a linear hybrid scheme (a combination of upwind and central approximations) is performed. Stability conditions are obtained that depend on the hybridity parameter, the source intensity factor (the product of intensity per time step), and the weight coefficient of the linear combination of source power on the lower- and upper-time layer. In a nonlinear case for the non-equilibrium by velocities and temperatures equations of gas suspension motion, the linear stability analysis was confirmed by calculation. It is established that the maximum permissible Courant number of the hybrid large-particle method of the second order of accuracy in space and time with an implicit account of friction and heat exchange between gas and particles does not depend on the intensity factor of interface interactions, the grid spacing and the relaxation times of phases (K-stability). In the traditional case of an explicit method for calculating the source terms, when a dimensionless intensity factor greater than 10, there is a catastrophic (by several orders of magnitude) decrease in the maximum permissible Courant number, in which the calculated time step becomes unacceptably small.
On the basic ratios of Riemann’s problem in the equilibrium heterogeneous medium, we obtained an asymptotically exact self-similar solution of the problem of interaction of a shock wave with a layer of gas-suspension to which converge the numerical solution of two-velocity two-temperature dynamics of gassuspension when reducing the size of dispersed particles.
The dynamics of the shock wave in gas and its interaction with a limited gas suspension layer for different sizes of dispersed particles: 0.1, 2, and 20 ìm were studied. The problem is characterized by two discontinuities decay: reflected and refracted shock waves at the left boundary of the layer, reflected rarefaction wave, and a past shock wave at the right contact edge. The influence of relaxation processes (dimensionless phase relaxation times) to the flow of a gas suspension is discussed. For small particles, the times of equalization of the velocities and temperatures of the phases are small, and the relaxation zones are sub-grid. The numerical solution at characteristic points converges with relative accuracy $O \, (10^{-4})$ to self-similar solutions.
-
Метод самосогласованных уравнений при решении задач рассеяния волн на системах цилиндрических тел
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 725-733Рассматривается один из численных методов решения задач рассеяния электромагнитных волн на системах, образованных параллельно ориентированными цилиндрическими элементами, — двумерных фотонных кристаллах. Описываемый метод является развитием метода разделения переменных при решении волнового уравнения. Его суть применительно к дифракционным задачам заключается в представлении поля в виде суммы первичного поля и неизвестного рассеянного на элементах среды вторичного поля. Математическое выражение для последнего записывается в виде бесконечных рядов по элементарным волновым функциям с неизвестными коэффициентами. В частности, поле, рассеянное на $N$ элементах, ищется в виде суммы $N$ дифракционных рядов, в которой один из рядов составлен из волновых функций одного тела, а волновые функции в остальных рядах выражены через собственные волновые функции первого тела при помощи теорем сложения. Далее из удовлетворения граничным условиям на поверхности каждого элемента получаются системы линейных алгебраических уравнений с бесконечным числом неизвестных — искомых коэффициентов разложения, которые разрешаются стандартными способами. Особенностью метода является использование аналитических выражений, описывающих дифракцию на одиночном элементе системы. В отличие от большинства строгих численных методов данный подход при его использовании позволяет получить информацию об амплитудно-фазовых или спектральных характеристиках поля только в локальных точках структуры. Отсутствие необходимости определения параметров поля во всей области пространства, занимаемой рассматриваемой многоэлементной системой, обуславливает высокую эффективность данного метода. В работе сопоставляются результаты расчета спектров пропускания двумерных фотонных кристаллов рассматриваемым методом с экспериментальными данными и численными результатами, полученными с использованием других подходов. Демонстрируется их хорошее согласие.
Ключевые слова: численные методы, дифракция, фотонные кристаллы, спектральное разложение, теорема сложения.
Method of self-consistent equations in solving problems of wave scattering on systems of cylindrical bodies
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 725-733One of the numerical methods for solving problems of scattering of electromagnetic waves by systems formed by parallel oriented cylindrical elements — two-dimensional photonic crystals — is considered. The method is based on the classical method of separation of variables for solving the wave equation. Тhe essence of the method is to represent the field as the sum of the primary field and the unknown secondary scattered on the elements of the medium field. The mathematical expression for the latter is written in the form of infinite series in elementary wave functions with unknown coefficients. In particular, the field scattered by N elements is sought as the sum of N diffraction series, in which one of the series is composed of the wave functions of one body, and the wave functions in the remaining series are expressed in terms of the eigenfunctions of the first body using addition theorems. From satisfying the boundary conditions on the surface of each element we obtain systems of linear algebraic equations with an infinite number of unknowns — the required expansion coefficients, which are solved by standard methods. A feature of the method is the use of analytical expressions describing diffraction by a single element of the system. In contrast to most numerical methods, this approach allows one to obtain information on the amplitude-phase or spectral characteristics of the field only at local points of the structure. The absence of the need to determine the field parameters in the entire area of space occupied by the considered multi-element system determines the high efficiency of this method. The paper compares the results of calculating the transmission spectra of two-dimensional photonic crystals by the considered method with experimental data and numerical results obtained using other approaches. Their good agreement is demonstrated.
-
Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.
Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, сверхзвуковой поток, тело квадратной формы, вращение.
Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.
The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.
Keywords: shock wave, Cartesian grid method, Euler equations, supersonic flow, square body, rotation. -
Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.
Ключевые слова: двойная пористость, усреднение, двухфазное течение, капиллярная нерав- новесность, динамическое капиллярное давление, динамические относительные фазовые проницаемости.
Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.
-
Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.
Ключевые слова: математическое моделирование, гидродинамика, итерационный метод, декомпозиция расчетной области, параллельный алгоритм.
Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.
-
Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.
Ключевые слова: разреженный газ, смесь газов, кинетическое уравнение Больцмана, консервативный проекционный метод, численное моделирование.
Modeling of gas mixture separation in a multistage micropump based on the solution of the Boltzmann equation
Computer Research and Modeling, 2024, v. 16, no. 6, pp. 1417-1432The paper simulates a mixture of gases in a multi-stage micro-pump and evaluates its effectiveness at separating the components of the mixture. A device in the form of a long channel with a series of transverse plates is considered. A temperature difference between the sides of the plates induces a radiometric gas flow within the device, and the differences in masses of the gases lead to differences in flow velocities and to the separation of the mixture. Modeling is based on the numerical solution of the Boltzmann kinetic equation, for which a splitting scheme is used, i. e., the advection equation and the relaxation problem are solved separately in alternation. The calculation of the collision integral is performed using the conservative projection method. This method ensures the strict fulfillment of the laws of conservation of mass, momentum, and energy, as well as the important asymptotic property of the equality of the integral of the Maxwell function to zero. Explicit first-order and second-order TVD-schemes are used to solve the advection equation. The calculations were performed for a neon-argon mixture using a model of solid spheres with real molecular diameters and masses. Software has been developed to allow calculations on personal computers and cluster systems. The use of parallelization leads to faster computation and constant time per iteration for devices of different sizes, enabling the modeling of large particle systems. It was found that the value of mixture separation, i. e. the ratio of densities at the ends of the device linearly depends on the number of cascades in the device, which makes it possible to estimate separation for multicascade systems, computer modeling of which is impossible. Flows and distributions of gas inside the device during its operation were analyzed. It was demonstrated that devices of this kind with a sufficiently large number of plates are suitable for the separation of gas mixtures, given that they have no moving parts and are quite simple in manufacture and less subject to wear.
-
Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.
Numerical analyses of singularity in the integral equation of theory of liquids in the RISM approximation
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 51-62Просмотров за год: 4.An approach to evaluation of a parametric portrait of integral equations of the theory of liquids in the RISM approximation was proposed. To obtain all associated solutions the continuation method was used. The equations reduced to a two-centered molecule model for symmetry reasons were deduced for molecular liquids. For molecular liquids, some equations were obtained which could be reduced, for symmetry reasons, to a two-center molecular model. To avoid critical points we changed the dependence of RISM-equations on reverse compressibility. The suggested method was used to perform numerical computations of methane reverse compressibility isotherms with three closures. No bifurcation of solutions was observed in the case of the partially linearized hypernetted chain closure. For other closures bifurcations of solutions were obtained and the model behavior nontypical for simple liquids was observed. In the case of Percus-Yevick closure nonphysical solutions were obtained at low temperature and density. Additional solution branch with a kink in the bifurcation point was obtained in the case of hypernetted chain closure at temperature above the critical point.
-
Фрактальный сплайн как модель фрактальных функций для генерирования фрактальных сигналов
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 583-587В работе представлен способ получения фрактальных сигналов с помощью фрактальных сплайнов, аналогичных сигналам, генерируемыми фрактальными функциями. Обосновывается гипотеза об идентичности дискретных фрактальных функций и линейных фрактальных сплайнов. Рассмотрены особенности расчета матрицы планирования для кумулятивного фрактального сплайна, приведены примеры сгенерированных кривых.
Fractal spline as a model of fractal functions for fractal signals generation
Computer Research and Modeling, 2013, v. 5, no. 4, pp. 583-587Просмотров за год: 2.This paper presents a method for obtaining fractal signals using fractal splines similar to signals generated by fractal functions. The hypothesis about the identity of discrete fractal functions and linear fractal splines is justified. There are considered the features of planning matrix calculation of cumulative fractal spline, examples of generated curves are shown.
-
Неполные системы линейных уравнений с ограничениями на переменные
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 719-745Сформулирована задача описания объектов различной природы на основе системы линейных уравнений, в которой число неизвестных превосходит число уравнений. Важной особенностью такой задачи, существенно усложняющей ее решение, являются ограничения на значения ряда переменных. Примером такой задачи является выбор биохимических реакций, осуществляющих преобразование заданного субстрата (исходного вещества) в заданный продукт. В этом случае неизвестными являются скорости биохимических реакций, образующие искомый вектор решения. Компоненты этого вектора в описываемом подходе разделяются на две группы: 1) задаваемые, $\vec{y}$; 2) зависящие от задаваемых, $\vec{x}$. Изучены варианты конфигурации области допустимых значений $\vec{y}$, следующие из ограничений, наложенных на компоненты $\vec{x}$. Выявлено, что часть ограничений могут быть излишними и поэтому исключенными из рассмотрения, что упрощает решение задачи. Анализируются случаи, когда два или более ограничений на $\vec{x}$ приводят к появлению жестких связей между компонентами $\vec{y}$. Описаны методы поиска базисных решений, учитывающие особенности данной задачи. Постановка общей задачи и полученные решения проиллюстрированы биохимическим примером.
Ключевые слова: линейные уравнения, прямоугольные матрицы, линейные неравенства, стехиометрия метаболизма, метаболические пути.
Incomplete systems of linear equations with restrictions of variable values
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 719-745Просмотров за год: 24. Цитирований: 3 (РИНЦ).The problem is formulated for description of objects having various natures which uses a system of linear equations with variable number exceeding the number of the equations. An important feature of this problem that substantially complicates its solving is the existing of restrictions imposed on a number of the variables. In particular, the choice of biochemical reaction aggregate that converts a preset substrate (a feedstock) into a preset product belongs to this kind of problems. In this case, unknown variables are the rates of biochemical reactions which form a vector to be determined. Components of this vector are subdivided into two groups: 1) the defined components, $\vec{y}$; 2) those dependent on the defined ones, $\vec{x}$. Possible configurations of the domain of $\vec{y}$ values permitted by restrictions imposed upon $\vec{x}$ components have been studied. It has been found that a part of restrictions may be superfluous and, therefore, unnecessary for the problem solving. Situations are analyzed when two or more $\vec{x}$ restrictions result in strict interconnections between $\vec{y}$ components. Methods of search of the basis solutions which take into account the peculiarities of this problem are described. Statement of the general problem and properties of its solutions are illustrated using a biochemical example.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





