Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1061-1067One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.
The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.
In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.
Ключевые слова: mathematical simulation, numerical method, grid-characteristic method, seismic waves, earthquake, seismic resistance.
Full-wave 3D earthquake simulation using the double-couple model and the grid-characteristic method
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1061-1067One of the destroying natural processes is the initiation of the regional seismic activity. It leads to a large number of human deaths. Much effort has been made to develop precise and robust methods for the estimation of the seismic stability of buildings. One of the most common approaches is the natural frequency method. The obvious drawback of this approach is a low precision due to the model oversimplification. The other method is a detailed simulation of dynamic processes using the finite-element method. Unfortunately, the quality of simulations is not enough due to the difficulty of setting the correct free boundary condition. That is why the development of new numerical methods for seismic stability problems is a high priority nowadays.
The present work is devoted to the study of spatial dynamic processes occurring in geological medium during an earthquake. We describe a method for simulating seismic wave propagation from the hypocenter to the day surface. To describe physical processes, we use a system of partial differential equations for a linearly elastic body of the second order, which is solved numerically by a grid-characteristic method on parallelepiped meshes. The widely used geological hypocenter model, called the “double-couple” model, was incorporated into this numerical algorithm. In this case, any heterogeneities, such as geological layers with curvilinear boundaries, gas and fluid-filled cracks, fault planes, etc., may be explicitly taken into account.
In this paper, seismic waves emitted during the earthquake initiation process are numerically simulated. Two different models are used: the homogeneous half-space and the multilayered geological massif with the day surface. All of their parameters are set based on previously published scientific articles. The adequate coincidence of the simulation results is obtained. And discrepancies may be explained by differences in numerical methods used. The numerical approach described can be extended to more complex physical models of geological media.
-
Оценка анизотропии сейсмического отклика от трещиноватых геологических объектов
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 231-240Сейсмическая разведка является наиболее распространённым методом поиска и разведки месторождений полезных ископаемых: нефти и природного газа. Зародившись в начале XX века, она получила значительное развитие и в настоящий момент используется практически всеми сервисными нефтяными компаниями. Основными ее преимуществами являются приемлемая стоимость проведения полевых работ (по сравнению с бурением скважин) и точность восстановления характеристик подповерхностного пространства. Однако с открытием нетрадиционных месторождений (например, Арктический шельф, Баженовская свита) актуальной стала задача усовершенствования существующих и создания новых технологий обработки сейсмических данных. Значительное развитие в данном направлении возможно с использованием численного моделирования распространения сейсмических волн в реалистичных моделях геологического массива, поскольку реализуется возможность задания произвольной внутренней структуры среды с последующей оценкой синтетического сигнала-отклика.
Настоящая работа посвящена исследованию пространственных динамических процессов, протекающих в геологических средах, содержащих трещиноватые включения, в процессе сейсмической разведки. Авторами построена трехмерная модель слоистого массива, содержащего пласт из флюидонасыщенных трещин, позволяющая оценить сигнал-отклик при варьировании структуры неоднородного включения. Для описания физических процессов используется система уравнений линейно-упругого тела в частных производных второго порядка, которая решается численно сеточно-характеристическим методом на гексаэдральных расчетных сетках. При этом плоскости трещин выделяются на этапе построения расчетной сетки, в дальнейшем используется дополнительная корректировка, обеспечивающая корректный сейсмический отклик для параметров модели, характерных для геологических сред.
В работе получены площадные трехкомпонентные сейсмограммы с общим пунктом взрыва. На их основе проведена оценка влияния структуры трещиноватой среды на анизотропию сейсмического отклика, регистрируемого на дневной поверхности на различном удалении от источника. Установлено, что кинематические характеристики сигнала остаются постоянными, тогда как динамические характеристики для упорядоченных и неупорядоченных моделей могут различаться на десятки процентов.
Ключевые слова: сейсморазведка, геологические трещины, анизотропия сейсмического отклика, математическое моделирование, численные методы, сеточно-характеристический метод.
Estimation of anisotropy of seismic response from fractured geological objects
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 231-240Просмотров за год: 11. Цитирований: 4 (РИНЦ).Seismic survey process is the common method of prospecting and exploration of deposits: oil and natural gas. Invented at the beginning of the XX century, it has received significant development and is currently used by almost all service oil companies. Its main advantages are the acceptable cost of fieldwork (in comparison with drilling wells) and the accuracy of estimating the characteristics of the subsurface area. However, with the discovery of non-traditional deposits (for example, the Arctic shelf, the Bazhenov Formation), the task of improving existing and creating new seismic data processing technologies became important. Significant development in this direction is possible with the use of numerical simulation of the propagation of seismic waves in realistic models of the geological medium, since it is possible to specify an arbitrary internal structure of the medium with subsequent evaluation of the synthetic signal-response.
The present work is devoted to the study of spatial dynamic processes occurring in geological medium containing fractured inclusions in the process of seismic exploration. The authors constructed a three-dimensional model of a layered massif containing a layer of fluid-saturated cracks, which makes it possible to estimate the signal-response when the structure of the inhomogeneous inclusion is varied. To describe physical processes, we use a system of equations for a linearly elastic body in partial derivatives of the second order, which is solved numerically by a grid-characteristic method on hexahedral grid. In this case, the crack planes are identified at the stage of constructing the grid, and further an additional correction is used to ensure a correct seismic response for the model parameters typical for geological media.
In the paper, three-component area seismograms with a common explosion point were obtained. On their basis, the effect of the structure of a fractured medium on the anisotropy of the seismic response recorded on the day surface at a different distance from the source was estimated. It is established that the kinematic characteristics of the signal remain constant, while the dynamic characteristics for ordered and disordered models can differ by tens of percents.
-
Определение крупных трещин в геологической среде с использованием сверточных нейронных сетей
Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 889-901В данной работе рассматривается обратная задача сейсморазведки — определение структуры исследуемой среды по зарегистрированному волновому отклику от нее. В качестве целевого объекта рассматриваются крупные трещины, размеры и положение которых необходимо определить.
Для решения прямой задачи используется численное моделирование сеточно-характеристическим методом. Сеточно-характеристический метод позволяет применять физически обоснованные алгоритмы расчета точек на внешних границах области и контактных границах внутри области интегрирования. Трещина принимается тонкой, для описания трещины используется специальное условие на створках трещины.
Обратная задача решается с помощью сверточных нейронных сетей. Входными данными нейронной сети являются сейсмограммы, интерпретируемые как изображения. Выходными данными являются маски, описывающие среду на структурированной сетке. Каждый элемент такой сетки относится к одному из двух классов: либо элемент сплош- ного геологического массива, либо элемент, через который проходит трещина. Такой подход позволяет рассматривать среду, в которой находится неизвестное наперед количество трещин.
Для обучения нейронной сети использовались исключительно примеры с одной трещиной. Для итогового тестирования обученной сети использовались отдельные примеры с несколькими трещинами, эти примеры никак не были задействованы в ходе обучения. Целью тестирования в таких условиях была проверка, что обученная сеть обладает достаточной общностью, распознает в сигнале признаки наличия трещины и при этомне страдает от переобучения на примерах с единственной трещиной в среде.
В работе показано, что сверточная сеть, обученная на примерах с единичной трещиной, может использоваться для обработки данных с множественными трещинами. Хорошо определяются в том числе небольшие трещины на больших глубинах, если они пространственно разнесены друг от друга на расстояние большее, чемдлина сканирующего импульса. В этом случае на сейсмограмме их волновые отклики хорошо различимы и могут быть интерпретированы нейронной сетью. В случае близко расположенных трещин могут возникать артефакты и ошибки интерпретации. Это связано с тем, что на сейсмограмме волновые отклики близких трещин сливаются, из-за чего нейронная сеть интерпретирует несколько рядом расположенных трещин как одну. Отметим, что подобную ошибку, скорее всего, допустил бы и человек при ручной интерпретации данных. В работе приведены примеры некоторых таких артефактов, искажений и ошибок распознавания.
Ключевые слова: сейсморазведка, сплошная среда, прямая задача, обратная задача, сеточно-характеристический метод, машинное обучение, нейронные сети, сверточные сети.
Detecting large fractures in geological media using convolutional neural networks
Computer Research and Modeling, 2025, v. 17, no. 5, pp. 889-901This paper considers the inverse problem of seismic exploration — determining the structure of the media based on the recorded wave response from it. Large cracks are considered as target objects, whose size and position are to be determined.
he direct problem is solved using the grid-characteristic method. The method allows using physically based algorithms for calculating outer boundaries of the region and contact boundaries inside the region. The crack is assumed to be thin, a special condition on the crack borders is used to describe the crack.
The inverse problem is solved using convolutional neural networks. The input data of the neural network are seismograms interpreted as images. The output data are masks describing the medium on a structured grid. Each element of such a grid belongs to one of two classes — either an element of a continuous geological massif, or an element through which a crack passes. This approach allows us to consider a medium with an unknown number of cracks.
The neural network is trained using only samples with one crack. The final testing of the trained network is performed using additional samples with several cracks. These samples are not involved in the training process. The purpose of testing under such conditions is to verify that the trained network has sufficient generality, recognizes signs of a crack in the signal, and does not suffer from overtraining on samples with a single crack in the media.
The paper shows that a convolutional network trained on samples with a single crack can be used to process data with multiple cracks. The networks detects fairly small cracks at great depths if they are sufficiently spatially separated from each other. In this case their wave responses are clearly distinguishable on the seismogram and can be interpreted by the neural network. If the cracks are close to each other, artifacts and interpretation errors may occur. This is due to the fact that on the seismogram the wave responses of close cracks merge. This cause the network to interpret several cracks located nearby as one. It should be noted that a similar error would most likely be made by a human during manual interpretation of the data. The paper provides examples of some such artifacts, distortions and recognition errors.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





