Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Нелинейная матричная краевая задача в случае параметрического резонанса
Компьютерные исследования и моделирование, 2015, т. 7, № 4, с. 821-833Найдены необходимые и достаточные условия существования решений нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. Построена сходящаяся итерационная схема для нахождения приближений к решению нелинейной матричной краевой задачи для системы обыкновенных дифференциальных уравнений в случае параметрического резонанса. В качестве примера применения построенной итерационной схемы найдены приближения к решениями периодической краевой задачи для уравнения типа Риккати с параметрическим возмущением. Для контроля точности найденных приближений к решениямперио дической краевой задачи для уравнения типа Риккати использованы невязки этих приближений.
Ключевые слова: нелинейная нетерова краевая задача, матричные дифференциальные уравнения, обобщенный оператор Грина, параметрический резонанс.
Nonlinear boudary value problem in the case of parametric resonance
Computer Research and Modeling, 2015, v. 7, no. 4, pp. 821-833Просмотров за год: 2.We construct necessary and sufficient conditions for the existence of solution of seminonlinear matrix boundary value problem for a parametric excitation system of ordinary differential equations. The convergent iteration algorithms for the construction of the solutions of the semi-nonlinear matrix boundary value problem for a parametric excitation system differential equations in the critical case have been found. Using the convergent iteration algorithms we expand solution of seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation in the neighborhood of the generating solution. Estimates for the value of residual of the solutions of the seminonlinear periodical boundary value problem for a parametric excitation Riccati type equation are found.
-
Техника проведения расчетов динамики показателей олигополистических рынков на основе операционного исчисления
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 949-963В настоящее время наиболее распространенный подход к расчету оптимальных по Нэшу–Курно стратегий участников олигополистических рынков, а следовательно и показателей таких рынков, связан с использованием линейных динамических игр с квадратичными критериями и решением обобщенных матричных уравнений Риккати.
Другой подход к исследованию оптимальных разомкнутых (open-loop) стратегий участников олигополистических рынков, развиваемый автором, основан на использовании операционного исчисления (в частности, Z-преобразования). Этот подход позволяет получить экономически приемлемые решения для более широкого диапазона изменения параметров используемых моделей, чем при применении методов, основанных на решении обобщенных матричных уравнений Риккати. Метод отличается относительной простотой вычислений и необходимой для экономического анализа наглядностью. Одним из его достоинств является то, что во многих важных для экономической практики случаях он, в отличие от традиционного подхода, обеспечивает возможность проведения расчетов с использованием широко распространенных электронных таблиц, что позволяет проводить исследование перспектив развития олигополистических рынков широкому кругу специалистов и потребителей.
В статье рассматриваются практические аспекты определения оптимальных по Нэшу–Курно стратегий участников олигополистических рынков на основе операционного исчисления, в частности техника проведения расчетов оптимальных по Нэшу–Курно стратегий в среде Excel. В качестве иллюстрации возможностей предлагаемых методов расчета исследуются примеры, близкие к практическим задачам прогнозирования показателей рынков высокотехнологичной продукции.
Полученные автором для многочисленных примеров и реальных экономических систем результаты расчетов, как с использованием полученных соотношений на основе электронных таблиц, так и с использованием расширенных уравнений Риккати, оказываются весьма близкими. В большинстве рассмотренных практических задач отклонение рассчитанных в соответствии с двумя подходами показателей, как правило, не превышает 1.5–2 %. Наибольшая величина относительных отклонений (до 3–5 %) наблюдается в начале периода прогнозирования. В типичных случаях период сравнительно заметных отклонений составляет 3–5 моментов времени. После переходного периода наблюдается практически полное совпадение значений искомых показателей при использовании обоих подходов.
Ключевые слова: олигополистические рынки, операционное исчисление, обобщенные матричные уравнения Риккати, электронные таблицы, факторизация.
Studying indicators of development of oligopolistic markets on the basis of operational calculus
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 949-963The traditional approach to computing optimal game strategies of firms on oligopolistic markets and of indicators of such markets consists in studying linear dynamical games with quadratic criteria and solving generalized matrix Riccati equations.
The other approach proposed by the author is based on methods of operational calculus (in particular, Z-transform). This approach makes it possible to achieve economic meaningful decisions under wider field of parameter values. It characterizes by simplicity of computations and by necessary for economic analysis visibility. One of its advantages is that in many cases important for economic practice, it, in contrast to the traditional approach, provides the ability to make calculations using widespread spreadsheets, which allows to study the prospects for the development of oligopolistic markets to a wide range of professionals and consumers.
The article deals with the practical aspects of determining the optimal Nash–Cournot strategies of participants in oligopolistic markets on the basis of operational calculus, in particular the technique of computing the optimal Nash–Cournot strategies in Excel. As an illustration of the opportinities of the proposed methods of calculation, examples close to the practical problems of forecasting indicators of the markets of high-tech products are studied.
The results of calculations obtained by the author for numerous examples and real economic systems, both using the obtained relations on the basis of spreadsheets and using extended Riccati equations, are very close. In most of the considered practical problems, the deviation of the indicators calculated in accordance with the two approaches, as a rule, does not exceed 1.5–2%. The highest value of relative deviations (up to 3–5%) is observed at the beginning of the forecasting period. In typical cases, the period of relatively noticeable deviations is 3–5 moments of time. After the transition period, there is almost complete agreement of the values of the required indicators using both approaches.
-
Итерационные методы декомпозиции при моделировании развития олигополистических рынков
Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1237-1256Один из принципов формирования рыночной конкурентной среды состоит в создании условий для реализации экономическими агентами стратегий, оптимальных по Нэшу – Курно. При стандартном подходе к определению рыночных стратегий, оптимальных по Нэшу – Курно, экономические агенты должны обладать полной информацией о показателях и динамических характеристиках всех участников рынка. Что не соответствует действительности.
В связи с этим для отыскания оптимальных по Нэшу – Курно решений в динамических моделях необходимо наличие координатора, обладающего полной информацией об участниках. Однако в случае большого числа участников игры, даже при наличии у координатора необходимой информации, появляются вычислительные трудности, связанные с необходимостью решения большого числа связанных (coupled) уравнений (в случае линейных динамических игр с квадратическим критерием — матричных уравнений Риккати).
В связи с этим возникает необходимость в декомпозиции общей задачи определения оптимальных стратегий участников рынка на частные (локальные) задачи. Применительно к линейным динамическим играм с квадратическим критерием исследовались подходы, основанные на итерационной декомпозиции связанных матричных уравнений Риккати и решении локальных уравнений Риккати. В настоящей статье рассматривается более простой подход к итерационному определению равновесия по Нэшу – Курно в олигополии путем декомпозиции с использованием операционного исчисления (операторного метода).
Предлагаемый подход основан на следующей процедуре. Виртуальный координатор, обладающий информацией о параметрах обратной функции спроса, формирует цены на перспективный период. Олигополисты при заданной фиксированной динамике цен определяют свои стратегии в соответствии с несколько измененным критерием оптимальности. Оптимальные объемы продукции олигополистов поступают к координатору, который на основе итерационного алгоритма корректирует динамику цены на предыдущем шаге.
Предлагаемая процедура иллюстрируется на примере статической и динамической моделей рационального поведения участников олигополии, которые максимизируют чистую текущую стоимость (NPV).
При использовании методов операционного исчисления (и, в частности, обратного Z-преобразования) найдены условия, при которых итерационная процедура приводит к равновесным уровням цены и объемов производства в случае линейных динамических игр как с квадратичными, так и с нелинейными (вогнутыми) критериями оптимизации.
Рассмотренный подход использован применительно к примерам дуополии, триополии, дуополии на рынке с дифференцированным продуктом, дуополии с взаимодействующими олигополистами при линейной обратной функции спроса. Сопоставление результатов расчетов динамики цены и объемов производства олигополистов для рассмотренных примеров на основе связанных (coupled) уравнений матричных уравнений Риккати в Matlab, а также в соответствии с предложенным итерационным методом в широко доступной системе Excel показывает их практическую идентичность.
Кроме того, применение предложенной итерационной процедуры проиллюстрировано на примере дуополии с нелинейной функцией спроса.
Ключевые слова: итерационные методы, олигополия, динамические игры, операционное исчисление, равновесие по Нэшу – Курно.
Iterative decomposition methods in modelling the development of oligopolistic markets
Computer Research and Modeling, 2025, v. 17, no. 6, pp. 1237-1256One of the principles of forming a competitive market environment is to create conditions for economic agents to implement Nash – Cournot optimal strategies. With the standard approach to determining Nash – Cournot optimal market strategies, economic agents must have complete information about the indicators and dynamic characteristics of all market participants. Which is not true.
In this regard, to find Nash – Cournot optimal solutions in dynamic models, it is necessary to have a coordinator who has complete information about the participants. However, in the case of a large number of game participants, even if the coordinator has the necessary information, computational difficulties arise associated with the need to solve a large number of coupled equations (in the case of linear dynamic games — Riccati matrix equations).
In this regard, there is a need to decompose the general problem of determining optimal strategies for market participants into private (local) problems. Approaches based on the iterative decomposition of coupled matrix Riccati equations and the solution of local Riccati equations were studied for linear dynamic games with a quadratic criterion. This article considers a simpler approach to the iterative determination of the Nash – Cournot equilibrium in an oligopoly, by decomposition using operational calculus (operator method).
The proposed approach is based on the following procedure. A virtual coordinator, which has information about the parameters of the inverse demand function, forms prices for the prospective period. Oligopolists, given fixed price dynamics, determine their strategies in accordance with a slightly modified optimality criterion. The optimal volumes of production of the oligopolists are sent to the coordinator, who, based on the iterative algorithm, adjusts the price dynamics at the previous step.
The proposed procedure is illustrated by the example of a static and dynamic model of rational behavior of oligopoly participants who maximize the net present value (NPV). Using the methods of operational calculus (and in particular, the inverse Z-transformation), conditions are found under which the iterative procedure leads to equilibrium levels of price and production volumes in the case of linear dynamic games with both quadratic and nonlinear (concave) optimization criteria.
The approach considered is used in relation to examples of duopoly, triopoly, duopoly on the market with a differentiated product, duopoly with interacting oligopolists with a linear inverse demand function. Comparison of the results of calculating the dynamics of price and production volumes of oligopolists for the considered examples based on coupled equations of the matrix Riccati equations in Matlab (in the table — Riccati), as well as in accordance with the proposed iterative method in the widely available Excel system shows their practical identity.
In addition, the application of the proposed iterative procedure is illustrated by the example of a duopoly with a nonlinear demand function.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





