Текущий выпуск Номер 4, 2025 Том 17

Все выпуски

Результаты поиска по 'gene':
Найдено статей: 15
  1. Орлов М.А., Камзолова С.Г., Рясик А.А., Зыкова Е.А., Сорокин А.А.
    Профили вызванной суперспирализацией дестабилизации дуплекса ДНК (SIDD) для промоторов бактериофага T7
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 867-878

    Для функционирования регуляторных областей ДНК решающее значение имеет не нуклеотидная последовательность (генетический текст), а их физико-химические и структурные свойства. Именно они обеспечивают кодирование ДНК-белковых взаимодействий, лежащих в основе различных процессов регуляции. Среди таких свойств SIDD (Stress-Induced Duplex Destabilization) — характеристика, описывающая склонность участка дуплекса ДНК к плавлению при заданном уровне суперспирализации. Ранее для данного параметра дуплекса показана роль в функционировании областей регуляции различного типа. В данной работе модель SIDD использована для получения профилей вероятности плавления последовательностей промоторов бактериофага T7. Данный геном характеризуется малым размером (примерно 40 тыс. пар нуклеотидов) и временной организацией экспрессии генов: на первом этапе инфекции ранняя область Т7-ДНК транскрибируется РНК-полимеразой бактерии-хозяина, на более поздних этапах жизненного цикла фагоспецифичная РНК-полимераза последовательно производит транскрипцию областей генов II класса и III класса. При этом механизмы дифференциального узнавания промоторов разных групп ферментом-полимеразой не могут быть основаны исключительно на их нуклеотидной последовательности, в частности в связи с тем, что она очень близка для большинства таких промоторов. В то же время полученные профили SIDD данных промоторов сильно различаются и могут быть разделены на характерные группы, соответствующие функциональным классам промоторов Т7-ДНК. Так, все промоторы ранней области находятся в области влияния одного максимально дестабилизированного участка дуплекса ДНК, соответствующего различным областям конкретных промоторов. Промоторы класса II лишены значительно дестабилизированных областей вблизи точки старта транскрипции. Напротив, промоторы III класса имеют характерные пики профилей вероятности плавления, в каждом случае локализованные в ближней downstream-области. Таким образом, установлены значительные различия профилей для промоторных областей при очень близкой нуклеотидной последовательности (промоторы II и III классов отличаются единичными заменами нуклеотидов), что подтверждает высокую чувствительность рассматриваемого свойства дуплекса к первичной структуре, а также необходимость рассмотрения широкого генетического контекста. Описанные различия профилей вероятности плавления на основе модели SIDD наряду с другими физическими свойствами могут определять дифференциальное узнавание промоторов разных классов РНК-полимеразами.

    Orlov M.A., Kamzolova S.G., Ryasik A.A., Zykova E.A., Sorokin A.A.
    Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878

    The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.

    Просмотров за год: 18.
  2. Брацун Д.А., Захаров А.П., Письмен Л.М.
    Многоуровневое математическое моделирование возникновения и роста опухоли в ткани эпителия
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 585-604

    В работе предлагается математическая модель возникновения раковых образований в двумерной ткани эпителия. Базисная модель роста эпителия описывает возникновение интенсивного движения и роста ткани при ее повреждении. Для этого в схеме расчета предусмотрена возможность деления и интеркаляции клеток. Предполагается, что движение клеток растущего эпителия вызывается волной митоген-активируемой протеинкиназы, которая в свою очередь активируется химико-механическим сигналом, распространяющимся по ткани из-за ее локального повреждения. В работе предполагается, что раковые клетки возникают из-за локального сбоя пространственной синхронизации циркадианных ритмов. Изучение эволюционной динамики модели позволяет изучить физико-химические свойства опухоли и определить связь между возникновением раковых клеток и параметрами развития всей ткани, координирующей свою эволюцию посредством обмена химико-механическими сигналами.

    Bratsun D.A., Zakharov A.P., Pismen L.M.
    Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
    Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604

    In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.

    Просмотров за год: 10. Цитирований: 12 (РИНЦ).
  3. Жданова О.Л., Колбина Е.А., Фрисман Е.Я.
    Эволюционные эффекты неселективного равновесного промысла в генетически неоднородной популяции
    Компьютерные исследования и моделирование, 2025, т. 17, № 4, с. 717-735

    Оптимизация промысла остается важной задачей математической биологии. Концепция максимального равновесного изъятия MSY, популярная в теории оптимальной эксплуатации, предполагает поддержание численности популяции на уровне максимального воспроизводства, что в теории позволяет балансировать между экономической выгодой и сохранением биоресурсов. Однако этот подход имеет ограничения, обусловленные сложной структурой популяций и нелинейностью динамических процессов. Особую проблему представляют эволюционные последствия: селективный промысел изменяет условия отбора, что ведет к трансформации поведенческих характеристик, ухудшению качества потомства и изменению генофонда. Влияние неселективного промысла на генетический состав изучено меньше.

    В работе исследуется влияние неселективного промысла с постоянной долей изъятия на эволюцию генетически неоднородной популяции. Предполагается, что генетическое разнообразие контролируется одним локусом с двумя аллелями. При высокой и низкой численности преимущество получают разные генотипы: одни более плодовиты (r-стратегия), другие более устойчивы к ограничению по ресурсам (K-стратегия). Рассматривается классическая эколого-генетическая модель с дискретным временем в предположении, что приспособленность каждого из генотипов линейно зависит от популяционной численности. Включение в модель коэффициента промыслового изъятия позволяет связать задачу оптимизации промысла с задачей прогноза отбора генотипов.

    Аналитически показано, что при промысле, обеспечивающем максимальный устойчивый улов (MSY), равновесный генетический состав не меняется, а численность снижается вдвое, при этом тип генетического равновесия может измениться. Это связано с тем, что оптимальная доля изъятия для одного генетического равновесия не является оптимальной для других. В отсутствие промысла доминируют K-стратеги, но изъятие особей может сместить баланс в пользу r-стратегов, чья высокая плодовитость компенсирует потери. Определены критические уровни изъятия, при которых происходит смена доминирующей стратегии.

    Результаты объясняют, почему промысловые популяции медленно восстанавливаются после прекращения эксплуатации: промысел закрепляет адаптации, выгодные при изъятии, но снижающие устойчивость в естественных условиях. Например, у песцов в неволе закрепляются высокопродуктивные генотипы, тогда как в природе преобладают особи с меньшей плодовитостью, но большей выживаемостью. Это указывает на необходимость учета генетической динамики при разработке стратегий устойчивого промысла.

    Zhdanova O.L., Kolbina E.A., Frisman E.Y.
    Evolutionary effects of non-selective sustainable harvesting in a genetically heterogeneous population
    Computer Research and Modeling, 2025, v. 17, no. 4, pp. 717-735

    The problem of harvest optimization remains a central challenge in mathematical biology. The concept of Maximum Sustainable Yield (MSY), widely used in optimal exploitation theory, proposes maintaining target populations at levels ensuring maximum reproduction, theoretically balancing economic benefits with resource conservation. While MSYbased management promotes population stability and system resilience, it faces significant limitations due to complex intrapopulation structures and nonlinear dynamics in exploited species. Of particular concern are the evolutionary consequences of harvesting, as artificial selection may drive changes divergent from natural selection pressures. Empirical evidence confirms that selective harvesting alters behavioral traits, reduces offspring quality, and modifies population gene pools. In contrast, the genetic impacts of non-selective harvesting remain poorly understood and require further investigation.

    This study examines how non-selective harvesting with constant removal rates affects evolution in genetically heterogeneous populations. We model genetic diversity controlled by a single diallelic locus, where different genotypes dominate at high/low densities: r-strategists (high fecundity) versus K-strategists (resource-limited resilience). The classical ecological and genetic model with discrete time is considered. The model assumes that the fitness of each genotype linearly depends on the population size. By including the harvesting withdrawal coefficient, the model allows for linking the problem of optimizing harvest with the that of predicting genotype selection.

    Analytical results demonstrate that under MSY harvesting the equilibrium genetic composition remains unchanged while population size halves. The type of genetic equilibrium may shift, as optimal harvest rates differ between equilibria. Natural K-strategist dominance may reverse toward r-strategists, whose high reproduction compensates for harvest losses. Critical harvesting thresholds triggering strategy shifts were identified.

    These findings explain why exploited populations show slow recovery after harvesting cessation: exploitation reinforces adaptations beneficial under removal pressure but maladaptive in natural conditions. For instance, captive arctic foxes select for high-productivity genotypes, whereas wild populations favor lower-fecundity/higher-survival phenotypes. This underscores the necessity of incorporating genetic dynamics into sustainable harvesting management strategies, as MSY policies may inadvertently alter evolutionary trajectories through density-dependent selection processes. Recovery periods must account for genetic adaptation timescales in management frameworks.

  4. Краснобаева Л.А., Волков И.А., Якушевич Л.В.
    Динамика кинков, активированных в генах ADRB2, NOS1 и IL-5
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 391-399

    В данной работе метод концентраций применен к геному человека. Рассчитаны динамические характеристики трех различных генов (ADRB2, NOS1, IL-5) с установленным влиянием на течение бронхиальной астмы.

    Krasnobaeva L.A., Volkov I.A., Yakushevich L.V.
    Dynamics of kinks activated in the genes ADRB2, NOS1 and IL-5
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 391-399

    In this paper the method of concentrations is applied to the human genome. The dynamical characteristics of three different genes (ADRB2, NOS1, IL-5) with the established effect on bronchial asthma.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  5. Захаров А.П., Брацун Д.А.
    Синхронизации циркадианных ритмов в масштабах гена, клетки и всего организма
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 255-270

    В работе выделяется три характерных масштаба описания биосистемы: микроскопический (размер гена), мезоскопический (размер клетки) и макроскопический (размер организма). Для каждого случая обсуждается подход к моделированию циркадианных ритмов на примере предложенной ранее модели с запаздыванием. На уровне гена использовалось стохастическое описание. Показана устойчивость механизма ритмов по отношению к флуктуациям. На мезоскопическом уровне предложено детерминистское описание в рамках пространственно-распределенной модели. Обнаружен эффект групповой синхронизации колебаний в клетках. Макроскопические эффекты исследованы в рамках дискретной модели, описывающей коллективное поведение большого числа клеток. Обсуждается вопрос о сшивании результатов, полученных на разных уровнях описания. Проводится сравнение с экспериментальными данными.

    Zakharov A.P., Bratsun D.A.
    Synchronization of circadian rhythms in the scale of a gene, a cell and a whole organism
    Computer Research and Modeling, 2013, v. 5, no. 2, pp. 255-270

    In the paper three characteristic scales of a biological system are proposed: microscopic (gene's size), mesoscopic (cell’s size) and macroscopic level (organism’s size). For each case the approach to modeling of circadian rhythms is discussed on the base of a time-delay model. At gene’s scale the stochastic description has been used. The robustness of rhythms mechanism to the fluctuations has been demonstrated. At the mesoscopic scale we propose the deterministic description within the spatially extended model. It was found the effect of collective synchronization of rhythms in cells. Macroscopic effects have been studied within the discrete model describing the collective behaviour of large amount of cells. The problem of cross-linking of results obtained at different scales is discussed. The comparison with experimental data is given.

    Просмотров за год: 1. Цитирований: 8 (РИНЦ).
Страницы: предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.