Текущий выпуск Номер 1, 2025 Том 17

Все выпуски

Результаты поиска по 'effective rank':
Найдено статей: 4
  1. Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.

    Chulichkov A.I., Yuan B.
    Effective rank of a problem of function estimation based on measurement with an error of finite number of its linear functionals
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 189-202

    The problem of restoration of an element f of Euclidean functional space  L2(X) based on the results of measurements of a finite set of its linear functionals, distorted by (random) error is solved. A priori data aren't assumed. Family of linear subspaces of the maximum (effective) dimension for which the projections of element to them allow estimates with a given accuracy, is received. The effective rank ρ(δ) of the estimation problem is defined as the function equal to the maximum dimension of an orthogonal component Pf of the element f which can be estimated with a error, which is not surpassed the value δ. The example of restoration of a spectrum of radiation based on a finite set of experimental data is given.

  2. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1533-1538
    Editor’s note
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1533-1538
  3. Свириденко А.Б., Зеленков Г.А.
    Взаимосвязь и реализация квазиньютоновских и ньютоновских методов безусловной оптимизации
    Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 55-78

    Рассмотрены ньютоновские и квазиньютоновские методы безусловной оптимизации, основанные на факторизации Холесского, с регулировкой шага и с конечно-разностной аппроксимацией первых и вторых производных. Для увеличения эффективности квазиньютоновских методов предложено модифицированное разложение Холесского квазиньютоновской матрицы, определяющее и решение проблемы масштабирования шагов при спуске, и аппроксимацию неквадратичными функциями, и интеграцию с методом доверительной окрестности. Предложен подход к увеличению эффективности ньютоновских методов с конечно-разностной аппроксимацией первых и вторых производных. Приведены результаты численного исследования эффективности алгоритмов.

    Sviridenko A.B., Zelenkov G.A.
    Correlation and realization of quasi-Newton methods of absolute optimization
    Computer Research and Modeling, 2016, v. 8, no. 1, pp. 55-78

    Newton and quasi-Newton methods of absolute optimization based on Cholesky factorization with adaptive step and finite difference approximation of the first and the second derivatives. In order to raise effectiveness of the quasi-Newton methods a modified version of Cholesky decomposition of quasi-Newton matrix is suggested. It solves the problem of step scaling while descending, allows approximation by non-quadratic functions, and integration with confidential neighborhood method. An approach to raise Newton methods effectiveness with finite difference approximation of the first and second derivatives is offered. The results of numerical research of algorithm effectiveness are shown.

    Просмотров за год: 7. Цитирований: 5 (РИНЦ).
  4. Стонякин Ф.С., Лyшко Е.А., Третьяк И.Д., Аблаев С.С.
    Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778

    Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.

    Stonyakin F.S., Lushko Е.A., Trеtiak I.D., Ablaev S.S.
    Subgradient methods for weakly convex problems with a sharp minimum in the case of inexact information about the function or subgradient
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1765-1778

    The problem of developing efficient numerical methods for non-convex (including non-smooth) problems is relevant due to their widespread use of such problems in applications. This paper is devoted to subgradient methods for minimizing Lipschitz $\mu$-weakly convex functions, which are not necessarily smooth. It is well known that subgradient methods have low convergence rates in high-dimensional spaces even for convex functions. However, if we consider a subclass of functions that satisfies sharp minimum condition and also use the Polyak step, we can guarantee a linear convergence rate of the subgradient method. In some cases, the values of the function or it’s subgradient may be available to the numerical method with some error. The accuracy of the solution provided by the numerical method depends on the magnitude of this error. In this paper, we investigate the behavior of the subgradient method with a Polyak step when inaccurate information about the objective function value or subgradient is used in iterations. We prove that with a specific choice of starting point, the subgradient method with some analogue of the Polyak step-size converges at a geometric progression rate on a class of $\mu$-weakly convex functions with a sharp minimum, provided that there is additive inaccuracy in the subgradient values. In the case when both the value of the function and the value of its subgradient at the current point are known with error, convergence to some neighborhood of the set of exact solutions is shown and the quality estimates of the output solution by the subgradient method with the corresponding analogue of the Polyak step are obtained. The article also proposes a subgradient method with a clipped step, and an assessment of the quality of the solution obtained by this method for the class of $\mu$-weakly convex functions with a sharp minimum is presented. Numerical experiments were conducted for the problem of low-rank matrix recovery. They showed that the efficiency of the studied algorithms may not depend on the accuracy of localization of the initial approximation within the required region, and the inaccuracy in the values of the function and subgradient may affect the number of iterations required to achieve an acceptable quality of the solution, but has almost no effect on the quality of the solution itself.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.