Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О периодических режимах движения тела по горизонтальной шероховатой плоскости, реализуемых посредством перемещения двух внутренних масс
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 17-34Рассматривается механическая система, состоящая из твердого тела и двух масс, которые перемещаются внутри тела по взаимно перпендикулярным направляющим. Тело имеет плоскую грань, которая опирается на горизонтальную шероховатую плоскость. Движение масс внутри тела происходит в вертикальной плоскости по гармоническому закону с одним и тем же периодом. Предполагается, что силы трения, возникающие в области контакта тела и опорной плоскости, описываются классической моделью сухого кулоновского трения, а параметры задачи выбраны так, что тело может совершать безотрывное прямолинейное движение. Данная механическая система может служить простейшей моделью капсульного робота, движущегося по твердой поверхности посредством перемещения внутренних элементов.
В работе исследуются режимы движения тела, при которых его скорость изменяется периодически с периодом, равным периоду движения внутренних масс. Показано, что если в результате перемещения внутренних масс тело может начать движение из состояния покоя, то при любых допустимых значениях параметров задачи существует периодический режим движения. При изменении значений параметров может существенно меняться и характер периодического движения. В частности, возможны как реверсионные, так и безреверсионные режимы движения. В безреверсионном режиме тело движется в одном и том же направлении, а интервалы движения чередуются с интервалами покоя (залипания тела). В реверсионном режиме тело на временном интервале, равном одному периоду, движется как в положительном, так и в отрицательном направлении. В этом случае тело за период движения совершает две остановки. После остановки тело либо сразу продолжает движение в противоположном направлении, либо попадает в зону залипания и покоится в течение конечного промежутка времени, а затем начинает движение в противоположном направлении. Было также установлено, что при определенных значениях параметров возможен периодический реверсионный режим, при котором тело движется без залипания. Была проведена подробная классификация всех возможных типов периодических режимов движения. Дано их полное качественное описание и в трехмерном пространстве параметров задачи построены области существования каждого из возможных типов движения.
Ключевые слова: периодические движения, перемещение посредством внутренних масс, капсульные роботы, сухое трение.
On periodic modes of body motion along a horizontal rough plane, performed by moving two internal masses
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 17-34We consider a mechanical system consisting of a rigid body and two masses that move inside the body along mutually perpendicular guides. The body has a flat face, which rests on a horizontal rough plane. The masses move inside the body in a vertical plane according to a harmonic law with the same period. It is assumed that the friction forces arising in the area of contact between the body and the supporting plane are described by the classical model of dry Coulomb friction, and the parameters of the problem are chosen so that the body can perform translationally rectilinearly motion. This mechanical system can serve as the simplest model of a capsule robot moving on a solid surface by moving internal elements.
We study the modes of motion of a body in which its velocity is periodic with a period equal to the period of motion of the internal masses. It is shown that if the body can starts to move from a state of rest by means of displacements of the masses, then for any permissible values of the problem parameters there is a periodic mode of motion. Depending on the parameter values, the nature of the periodic motion can be essentially different. In particular, both reversible and nonreversible driving modes are possible. In the non-reversion mode, the body moves in the same direction, and intervals of movement alternate with intervals of rest (body sticking). In the reversal mode, the body moves in both positive and negative directions over a time interval equal to one period. In this case, the body makes two stops during the period of movement. After stopping, the body either immediately continues moving in the opposite direction, or enters a sticking zone and rests for a finite period of time, and then stats moving in the opposite direction. It was also found that, at certain parameter values, a periodic reversal mode is possible, in which the body moves without sticking. A detailed classification of all possible types of periodic motion modes was carried out. Their complete qualitative description is given and the regions of their existence in the three-dimensional space of the parameters are constructed.
-
Сокращение вида решающего правила метода многомерной интерполяции и аппроксимации в задаче классификации данных
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 475-484В данной статье исследуется метод машинного обучения на основе теории случайных функций. Одной из основных проблем данного метода является то, что вид решающего правила модели метода, построенной на данных обучающей выборки, становится более громоздким при увеличении количества примеров выборки. Решающее правило модели является наиболее вероятной реализацией случайной функции и представляется в виде многочлена с количеством слагаемых, равным количеству обучающих элементов выборки. В статье будет показано, что для рассматриваемого метода существует быстрый способ сокращения обучающей выборки и, соответственно, вида решающего правила. Уменьшение примеров обучающей выборки происходит за счет поиска и удаления малоинформативных (слабых) элементов, которые незначительно влияют на итоговый вид решающей функции, и шумовых элементов выборки. Для каждого $(x_i,y_i)$-го элемента выборки было введено понятие значимости, выражающееся величиной отклонения оцененного значения решающей функции модели в точке $x_i$, построенной без $i$-го элемента, от реального значения $y_i$. Будет показана возможность косвенного использования найденных слабых элементов выборки при обучении модели метода, что позволяет не увеличивать количество слагаемых в полученной решающей функции. Также в статье будут описаны проведенные эксперименты, в которых показано, как изменение количества обучающих данных влияет на обобщающую способность решающего правила модели в задаче классификации.
Ключевые слова: машинное обучение, интерполяция, аппроксимация, случайная функция, система линейных уравнений, скользящий контроль, классификация.
Reduction of decision rule of multivariate interpolation and approximation method in the problem of data classification
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 475-484Просмотров за год: 5.This article explores a method of machine learning based on the theory of random functions. One of the main problems of this method is that decision rule of a model becomes more complicated as the number of training dataset examples increases. The decision rule of the model is the most probable realization of a random function and it's represented as a polynomial with the number of terms equal to the number of training examples. In this article we will show the quick way of the number of training dataset examples reduction and, accordingly, the complexity of the decision rule. Reducing the number of examples of training dataset is due to the search and removal of weak elements that have little effect on the final form of the decision function, and noise sampling elements. For each $(x_i,y_i)$-th element sample was introduced the concept of value, which is expressed by the deviation of the estimated value of the decision function of the model at the point $x_i$, built without the $i$-th element, from the true value $y_i$. Also we show the possibility of indirect using weak elements in the process of training model without increasing the number of terms in the decision function. At the experimental part of the article, we show how changed amount of data affects to the ability of the method of generalizing in the classification task.
-
Новая форма уравнений в моделировании движения тяжелого твердого тела
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.
A new form of differential equations in modeling of the motion of a heavy solid
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884Просмотров за год: 6.The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.
-
Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.
Ключевые слова: детектирование летающих объектов на изображениях, сверточная нейронная сеть, YOLO, мобильная система компьютерного зрения.
Convolutional neural networks of YOLO family for mobile computer vision systems
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 615-631The work analyzes known classes of convolutional neural network models and studies selected from them promising models for detecting flying objects in images. Object detection here refers to the detection, localization in space and classification of flying objects. The work conducts a comprehensive study of selected promising convolutional neural network models in order to identify the most effective ones from them for creating mobile real-time computer vision systems. It is shown that the most suitable models for detecting flying objects in images, taking into account the formulated requirements for mobile real-time computer vision systems, are models of the YOLO family, and five models from this family should be considered: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 and YOLOv7-Tiny. An appropriate dataset has been developed for training, validation and comprehensive research of these models. Each labeled image of the dataset includes from one to several flying objects of four classes: “bird”, “aircraft-type unmanned aerial vehicle”, “helicopter-type unmanned aerial vehicle”, and “unknown object” (objects in airspace not included in the first three classes). Research has shown that all convolutional neural network models exceed the specified threshold value by the speed of detecting objects in the image, however, only the YOLOv4-CSP and YOLOv7 models partially satisfy the requirements of the accuracy of detection of flying objects. It was shown that most difficult object class to detect is the “bird” class. At the same time, it was revealed that the most effective model is YOLOv7, the YOLOv4-CSP model is in second place. Both models are recommended for use as part of a mobile real-time computer vision system with condition of additional training of these models on increased number of images with objects of the “bird” class so that they satisfy the requirement for the accuracy of detecting flying objects of each four classes.
-
Особенности визуализации клеточных автоматов в области наноэлектроники
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 735-756Представлена формализация моделей визуализации клеточных автоматов (КА), рассмотрена их классификация. Также описаны возможные подходы к генерации звукорядов. Приведены частные случаи вариантов визуализации для КА различной размерности. На примере простого 3D КА указаны особенности визуализации наноразмерных систем.
The peculiarities of cellular automata visualization in nanoelectronics
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 735-756Просмотров за год: 3. Цитирований: 3 (РИНЦ).The general formalization of visualization models in cellular automata (CA) scope is presented, their classification is examined. It also describes possible approaches to the sound scales generation. We consider special cases of visualization manners for CA of various dimensions. By a simple 3D CA example the features of nanoscale systems imaging are indicated.
-
Исследование свойств материала пластины лазерным ультразвуком при помощи анализа кратных волн
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 653-673Ультразвуковое исследование свойств материалов является прецизионным методом определения их упругих и прочностных свойств в связи с маленькой по сравнению с толщиной пластины длиной волны, образующейся в материале после воздействия лазерным пучком. В данной работе подробно рассмотрены волновые процессы, возникающие в ходе проведения этих измерений. Показано, что полноволновое численное моделирование позволяет детально изучать типы волн, геометрические характеристики их профиля, скорость прихода волн в различные точки, выявлять типы волн, измерения по которым оптимальны для исследований образца с заданными материалом и формой, разрабатывать методики измерений.
Для осуществления полноволнового моделирования в данной работе был применен сеточно-характеристический метод на структурированных сетках и решалась гиперболическая система уравнений, описывающая распространение упругих волн в материале рассматриваемой пластины конечной толщины на конкретном примере отношения толщины к ширине 1:10.
Для моделирования упругого фронта, возникшего в пластине от воздействия лазерного пучка, предложена соответствующая постановка задачи. Выполнено сравнение возникающих при ее использовании волновых эффектов со случаем точечного источника и с данными физических экспериментов о распространении лазерного ультразвука в металлических пластинах.
Проведено исследование, на основании которого были выявлены характерные геометрические особенности рассматриваемых волновых процессов. Исследованы основные типы упругих волн, возникающие в процессе воздействия лазерного пучка, проанализирована возможность их использования для исследования свойств материалов и предложен метод, основанный на анализе кратных волн. Проведено тестирование предложенного метода по изучению свойств пластины при помощи кратных волн на синтетических данных, показавшее хорошие результаты.
Следует отметить, что большая часть исследований кратных волн направлена на разработку методов их подавления. Кратные волны не используются для обработки результатов ультразвуковых исследований в связи со сложностью их выявления в регистрируемых данных физического эксперимента.
За счет применения полноволнового моделирования и анализа пространственных динамических волновых процессов в данной работе кратные волны рассмотрены подробно и предложено деление материалов на три класса, позволяющее использовать кратные волны для получения информации о материале пластины.
Основными результатами работы являются разработанные постановки задачи для численного моделирования исследования пластин конечной толщины лазерным ультразвуком; выявленные особенности волновых явлений, возникающих в пластинах конечной толщины; разработанная методика исследования свойств пластины на основе кратных волн; разработанная классификация материалов.
Результаты исследований, приведенные в настоящей работе, могут быть интересны для разработок не только в области ультразвуковых исследований материалов, но и в области сейсмической разведки земных недр, так как предложенный подход может быть расширен на более сложные случаи гетерогенных сред и применен в геофизике.
Ключевые слова: исследование свойств материалов, пластины, лазерный ультразвук, математическое моделирование, численные методы, компьютерное моделирование, сеточно-характеристический метод, кратные волны.
Investigation the material properties of a plate by laser ultrasound using the analysis of multiple waves
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 653-673Просмотров за год: 3.Ultrasound examination of material properties is a precision method for determining their elastic and strength properties in connection with the small wavelength formed in the material after impact of a laser beam. In this paper, the wave processes arising during these measurements are considered in detail. It is shown that full-wave numerical modeling allows us to study in detail the types of waves, topological characteristics of their profile, speed of arrival of waves at various points, identification the types of waves whose measurements are most optimal for examining a sample made of a specific material of a particular shape, and to develop measurement procedures.
To carry out full-wave modeling, a grid-characteristic method on structured grids was used in this work and a hyperbolic system of equations that describes the propagation of elastic waves in the material of the thin plate under consideration on a specific example of a ratio of thickness to width of 1:10 was solved.
To simulate an elastic front that arose in the plate due to a laser beam, a model of the corresponding initial conditions was proposed. A comparison of the wave effects that arise during its use in the case of a point source and with the data of physical experiments on the propagation of laser ultrasound in metal plates was made.
A study was made on the basis of which the characteristic topological features of the wave processes under consideration were identified and revealed. The main types of elastic waves arising due to a laser beam are investigated, the possibility of their use for studying the properties of materials is analyzed. A method based on the analysis of multiple waves is proposed. The proposed method for studying the properties of a plate with the help of multiple waves on synthetic data was tested, and it showed good results.
It should be noted that most of the studies of multiple waves are aimed at developing methods for their suppression. Multiple waves are not used to process the results of ultrasound studies due to the complexity of their detection in the recorded data of a physical experiment.
Due to the use of full wave modeling and analysis of spatial dynamic wave processes, multiple waves are considered in detail in this work and it is proposed to divide materials into three classes, which allows using multiple waves to obtain information about the material of the plate.
The main results of the work are the developed problem statements for the numerical simulation of the study of plates of a finite thickness by laser ultrasound; the revealed features of the wave phenomena arising in plates of a finite thickness; the developed method for studying the properties of the plate on the basis of multiple waves; the developed classification of materials.
The results of the studies presented in this paper may be of interest not only for developments in the field of ultrasonic non-destructive testing, but also in the field of seismic exploration of the earth's interior, since the proposed approach can be extended to more complex cases of heterogeneous media and applied in geophysics.
-
Особенности маршрутизации общественного транспорта в городах разных видов
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 381-394В статье представлена классификация городов с учетом планировочных особенностей и возможных транспортных решений для городов различных типов. Также обсуждаются примеры различных стратегий развития городского общественного транспорта в России и странах Европейского союза с сопоставлением их эффективности. В статье приводятся примеры влияния городского планирования на мобильность граждан. Для реализации сложных стратегических решений необходимо использовать микро- и макромодели, которые позволяют сравнивать ситуации «как есть» и «как будет» для прогнозирования последствий. Кроме того, авторы предлагают методику совершенствования маршрутной сети общественного транспорта и улично-дорожной сети, которая включает определение потребностей населения в трудовых и учебных корреспонденциях, идентификацию узких мест улично-дорожной сети, разработку имитационных моделей и выработку рекомендаций по результатам эксперимента на моделях, а также расчет эффективности, включающий расчет положительного социального эффекта, экономическую эффективность, повышение экологичности и устойчивости городской транспортной системы. Для обоснования предложенной методологии были построены макро- и микромодели исследуемого города с учетом пространственной планировки и других особенностей города. Таким образом, на примере города Набережные Челны показано, что использование нашей методологии может помочь улучшить ситуацию на дорогах за счет оптимизации сети автобусных маршрутов и дорожной инфраструктуры. Результаты показали, что при реализации предложенных решений можно уменьшить транспортную нагрузку на узкие места, количество перекрывающихся автобусных маршрутов, а также плотность движения.
Ключевые слова: устойчивый транспорт, эффективность транспортной системы, маршрутная сеть, общественный транспорт.
Specifics of public transport routing in cities of different types
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 381-394This article presents a classification of cities, taking into account their spatial planning and possible transport solutions for cities of various types. It also discusses examples of various strategies for the development of urban public transport in Russia and the European Union with a comparison of their efficiency. The article gives examples of the impact of urban planning on mobility of citizens. To implement complex strategic decisions, it is necessary to use micro and macro models which allow a comparison of situations “as is” and “as to be” to predict consequences. In addition, the authors propose a methodology to improve public transport route network and road network, which includes determining population needs in working and educational correspondences, identifying bottlenecks in the road network, developing simulation models and developing recommendations based on the simulation results, as well as the calculation of efficiency, including the calculation of a positive social effect, economic efficiency, environmental friendliness and sustainability of the urban transport system. To prove the suggested methodology, the macro and micro models of the city under study were built taking into account the spatial planning and other specifics of the city. Thus, the case study of the city of Naberezhnye Chelny shows that the use of our methodology can help to improve the situation on the roads by optimizing the bus route network and the road infrastructure. The results showed that by implementing the proposed solutions one can decrease the amount of transport load on the bottlenecks, the number of overlapping bus routes and the traffic density.
-
Задачи и алгоритмы оптимальной кластеризации многомерных объектов по множеству разнородных показателей и их приложения в медицине
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 673-693Работа посвящена описанию авторских формальных постановок задачи кластеризации при заданном числе кластеров, алгоритмам их решения, а также результатам применения этого инструментария в медицине.
Решение сформулированных задач точными алгоритмами реализаций даже относительно невысоких размерностей до выполнения условий оптимальности невозможно за сколько-нибудь рациональное время по причине их принадлежности к классу NP.
В связи с этим нами предложен гибридный алгоритм, сочетающий преимущества точных методов на базе кластеризации в парных расстояниях на начальном этапе с быстродействием методов решения упрощенных задач разбиения по центрам кластеров на завершающем этапе. Для развития данного направления разработан последовательный гибридный алгоритм кластеризации с использованием случайного поиска в парадигме роевого интеллекта. В статье приведено его описание и представлены результаты расчетов прикладных задач кластеризации.
Для выяснения эффективности разработанного инструментария оптимальной кластеризации многомерных объектов по множеству разнородных показателей был выполнен ряд вычислительных экспериментов с использованием массивов данных, включающих социально-демографические, клинико-анамнестические, электроэнцефалографические и психометрические данные когнитивного статуса пациентов кардиологической клиники. Получено эксперимен- тальное доказательство эффективности применения алгоритмов локального поиска в парадигме роевого интеллекта в рамках гибридного алгоритма при решении задач оптимальной кластеризации. Результаты вычислений свидетельствуют о фактическом разрешении основной проблемы применения аппарата дискретной оптимизации — ограничения доступных размерностей реализаций задач. Нами показано, что эта проблема снимается при сохранении приемлемой близости результатов кластеризации к оптимальным.
Прикладное значение полученных результатов кластеризации обусловлено также тем, что разработанный инструментарий оптимальной кластеризации дополнен оценкой стабильности сформированных кластеров, что позволяет к известным факторам (наличие стеноза или старший возраст) дополнительно выделить тех пациентов, когнитивные ресурсы которых оказываются недостаточны, чтобы преодолеть влияние операционной анестезии, вследствие чего отмечается однонаправленный эффект послеоперационного ухудшения показателей сложной зрительно-моторной реакции, внимания и памяти. Этот эффект свидетельствует о возможности дифференцированно классифицировать пациентов с использованием предлагаемого инструментария.
Ключевые слова: оптимальная кластеризация, парные расстояния, центры кластеров, гибридный алгоритм, локальный поиск, роевой интеллект.
Tasks and algorithms for optimal clustering of multidimensional objects by a variety of heterogeneous indicators and their applications in medicine
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 673-693The work is devoted to the description of the author’s formal statements of the clustering problem for a given number of clusters, algorithms for their solution, as well as the results of using this toolkit in medicine.
The solution of the formulated problems by exact algorithms of implementations of even relatively low dimensions before proving optimality is impossible in a finite time due to their belonging to the NP class.
In this regard, we have proposed a hybrid algorithm that combines the advantages of precise methods based on clustering in paired distances at the initial stage with the speed of methods for solving simplified problems of splitting by cluster centers at the final stage. In the development of this direction, a sequential hybrid clustering algorithm using random search in the paradigm of swarm intelligence has been developed. The article describes it and presents the results of calculations of applied clustering problems.
To determine the effectiveness of the developed tools for optimal clustering of multidimensional objects according to a variety of heterogeneous indicators, a number of computational experiments were performed using data sets including socio-demographic, clinical anamnestic, electroencephalographic and psychometric data on the cognitive status of patients of the cardiology clinic. An experimental proof of the effectiveness of using local search algorithms in the paradigm of swarm intelligence within the framework of a hybrid algorithm for solving optimal clustering problems has been obtained.
The results of the calculations indicate the actual resolution of the main problem of using the discrete optimization apparatus — limiting the available dimensions of task implementations. We have shown that this problem is eliminated while maintaining an acceptable proximity of the clustering results to the optimal ones. The applied significance of the obtained clustering results is also due to the fact that the developed optimal clustering toolkit is supplemented by an assessment of the stability of the formed clusters, which allows for known factors (the presence of stenosis or older age) to additionally identify those patients whose cognitive resources are insufficient to overcome the influence of surgical anesthesia, as a result of which there is a unidirectional effect of postoperative deterioration of complex visual-motor reaction, attention and memory. This effect indicates the possibility of differentiating the classification of patients using the proposed tools.
-
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
Ключевые слова: automatic relevance determination, Bayesian deep neural networks, truncated lognormal variational approximation, macroscopic image.
Image classification based on deep learning with automatic relevance determination and structured Bayesian pruning
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 927-938Deep learning’s power stems from complex architectures; however, these can lead to overfitting, where models memorize training data and fail to generalize to unseen examples. This paper proposes a novel probabilistic approach to mitigate this issue. We introduce two key elements: Truncated Log-Uniform Prior and Truncated Log-Normal Variational Approximation, and Automatic Relevance Determination (ARD) with Bayesian Deep Neural Networks (BDNNs). Within the probabilistic framework, we employ a specially designed truncated log-uniform prior for noise. This prior acts as a regularizer, guiding the learning process towards simpler solutions and reducing overfitting. Additionally, a truncated log-normal variational approximation is used for efficient handling of the complex probability distributions inherent in deep learning models. ARD automatically identifies and removes irrelevant features or weights within a model. By integrating ARD with BDNNs, where weights have a probability distribution, we achieve a variational bound similar to the popular variational dropout technique. Dropout randomly drops neurons during training, encouraging the model not to rely heavily on any single feature. Our approach with ARD achieves similar benefits without the randomness of dropout, potentially leading to more stable training.
To evaluate our approach, we have tested the model on two datasets: the Canadian Institute For Advanced Research (CIFAR-10) for image classification and a dataset of Macroscopic Images of Wood, which is compiled from multiple macroscopic images of wood datasets. Our method is applied to established architectures like Visual Geometry Group (VGG) and Residual Network (ResNet). The results demonstrate significant improvements. The model reduced overfitting while maintaining, or even improving, the accuracy of the network’s predictions on classification tasks. This validates the effectiveness of our approach in enhancing the performance and generalization capabilities of deep learning models.
-
Математическое моделирование динамики численности разновозрастных занятых в экономике региона
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.
Ключевые слова: нелинейная динамика, эконофизика, биофизика, когорта, численность занятого населения, уровень занятости, регион.
Mathematical modeling of the population dynamics of different age-group workers in the regional economy
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.
Keywords: nonlinear dynamics, econophysics, biophysics, age group, employed population, employment, region.Просмотров за год: 4. Цитирований: 15 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"