Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'assessment':
Найдено статей: 96
  1. Стонякин Ф.С., Лyшко Е.А., Третьяк И.Д., Аблаев С.С.
    Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
    Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778

    Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.

    Stonyakin F.S., Lushko Е.A., Trеtiak I.D., Ablaev S.S.
    Subgradient methods for weakly convex problems with a sharp minimum in the case of inexact information about the function or subgradient
    Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1765-1778

    The problem of developing efficient numerical methods for non-convex (including non-smooth) problems is relevant due to their widespread use of such problems in applications. This paper is devoted to subgradient methods for minimizing Lipschitz $\mu$-weakly convex functions, which are not necessarily smooth. It is well known that subgradient methods have low convergence rates in high-dimensional spaces even for convex functions. However, if we consider a subclass of functions that satisfies sharp minimum condition and also use the Polyak step, we can guarantee a linear convergence rate of the subgradient method. In some cases, the values of the function or it’s subgradient may be available to the numerical method with some error. The accuracy of the solution provided by the numerical method depends on the magnitude of this error. In this paper, we investigate the behavior of the subgradient method with a Polyak step when inaccurate information about the objective function value or subgradient is used in iterations. We prove that with a specific choice of starting point, the subgradient method with some analogue of the Polyak step-size converges at a geometric progression rate on a class of $\mu$-weakly convex functions with a sharp minimum, provided that there is additive inaccuracy in the subgradient values. In the case when both the value of the function and the value of its subgradient at the current point are known with error, convergence to some neighborhood of the set of exact solutions is shown and the quality estimates of the output solution by the subgradient method with the corresponding analogue of the Polyak step are obtained. The article also proposes a subgradient method with a clipped step, and an assessment of the quality of the solution obtained by this method for the class of $\mu$-weakly convex functions with a sharp minimum is presented. Numerical experiments were conducted for the problem of low-rank matrix recovery. They showed that the efficiency of the studied algorithms may not depend on the accuracy of localization of the initial approximation within the required region, and the inaccuracy in the values of the function and subgradient may affect the number of iterations required to achieve an acceptable quality of the solution, but has almost no effect on the quality of the solution itself.

  2. Ильясов Д.В., Молчанов А.Г., Глаголев М.В., Суворов Г.Г., Сирин А.А.
    Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449

    Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.

    Ilyasov D.V., Molchanov A.G., Glagolev M.V., Suvorov G.G., Sirin A.A.
    Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: land use scenario analysis
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1427-1449

    The data of episodic field measurements of carbon dioxide balance components (soil respiration — Rsoil, ecosystem respiration — Reco, net ecosystem exchange — NEE) of hayfields under use and abandoned one are interpreted by modelling. The field measurements were carried within five field campaigns in 2018 and 2019 on the drained part of the Dubna Peatland in Taldom District, Moscow Oblast, Russia. The territory is within humid continental climate zone. Peatland drainage was done out for milled peat extraction. After extraction was stopped, the residual peat deposit (1–1.5 m) was ploughed and grassed (Poa pratensis L.) for hay production. The current ground water level (GWL) varies from 0.3–0.5 m below the surface during wet and up to 1.0 m during dry periods. Daily dynamics of CO2 fluxes was measured using dynamic chamber method in 2018 (August) and 2019 (May, June, August) for abandoned ditch spacing only with sanitary mowing once in 5 years and the ditch spacing with annual mowing. NEE and Reco were measured on the sites with original vegetation, and Rsoil — after vegetation removal. To model a seasonal dynamics of NEE, the dependence of its components (Reco, Rsoil, and Gross ecosystematmosphere exchange of carbon dioxide — GEE) from soil and air temperature, GWL, photosynthetically active radiation, underground and aboveground plant biomass were used. The parametrization of the models has been carried out considering the stability of coefficients estimated by the bootstrap method. R2 (α = 0.05) between simulated and measured Reco was 0.44 (p < 0.0003) on abandoned and 0.59 (p < 0.04) on under use hayfield, and GEE was 0.57 (p < 0.0002) and 0.77 (p < 0.00001), respectively. Numerical experiments were carried out to assess the influence of different haymaking regime on NEE. It was found that NEE for the season (May 15 – September 30) did not differ much between the hayfield without mowing (4.5±1.0 tC·ha–1·season–1) and the abandoned one (6.2±1.4). Single mowing during the season leads to increase of NEE up to 6.5±0.9, and double mowing — up to 7.5±1.4 tC·ha–1·season–1. This means increase of carbon losses and CO2 emission into the atmosphere. Carbon loss on hayfield for both single and double mowing scenario was comparable with abandoned hayfield. The value of removed phytomass for single and double mowing was 0.8±0.1 tC·ha–1·season–1 and 1.4±0.1 (45% carbon content in dry phytomass) or 3.0 and 4.4 t·ha–1·season–1 of hay (17% moisture content). In comparison with the fallow, the removal of biomass of 0.8±0.1 at single and 1.4±0.1 tC·ha–1·season–1 double mowing is accompanied by an increase in carbon loss due to CO2 emissions, i.e., the growth of NEE by 0.3±0.1 and 1.3±0.6 tC·ha–1·season–1, respectively. This corresponds to the growth of NEE for each ton of withdrawn phytomass per hectare of 0.4±0.2 tС·ha–1·season–1 at single mowing, and 0.9±0.7 tС·ha–1·season–1 at double mowing. Therefore, single mowing is more justified in terms of carbon loss than double mowing. Extensive mowing does not increase CO2 emissions into the atmosphere and allows, in addition, to “replace” part of the carbon loss by agricultural production.

  3. Дубинина М.Г.
    Пространственно-временные модели распространения информационно-коммуникационных технологий
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1695-1712

    В статье предложен пространственно-временной подход к моделированию диффузии информационно-коммуникационных технологий на основе уравнения Фишера – Колмогорова – Петровского – Пискунова, в котором кинетика диффузии описывается моделью Басса, широко применяемой для моделирования распространения инноваций на рынке. Для этого уравнения изучены его положения равновесия и на основе сингулярной теории возмущений получено приближенное решение в виде бегущей волны, т.е. решение, которое распространяется с постоянной скоростью, сохраняя при этом свою форму в пространстве. Скорость волны показывает, на какую величину за единичный интервал времени изменяется пространственная характеристика, определяющая данный уровень распространения технологии. Эта скорость существенно выше скорости, с которой происходит распространение за счет диффузии. С помощью построения такого автоволнового решения появляется возможность оценить время, необходимое субъекту исследования для достижения текущего показателя лидера.

    Полученное приближенное решение далее было применено для оценки факторов, влияющих на скорость распространения информационно-коммуникационных технологий по федеральным округам Российской Федерации. Вк ачестве пространственных переменных для диффузии мобильной связи среди населения рассматривались различные социально-экономические показатели. Полюсы роста, в которых возникают инновации, обычно характеризуются наивысшими значениями пространственных переменных. Для России таким полюсом роста является Москва, поэтому в качестве факторных признаков рассматривались показатели федеральных округов, отнесенные к показателям Москвы. Наилучшее приближение к исходным данным было получено для отношения доли затрат на НИОКР в ВРП к показателю Москвы, среднего за период 2000–2009 гг. Было получено, что для УФО на начальном этапе распространения мобильной связи отставание от столицы составило менее одного года, для ЦФО, СЗФО — 1,4 года, для ПФО, СФО, ЮФО и ДВФО — менее двух лет, для СКФО — немногим более двух лет. Кроме того, получены оценки времени запаздывания распространения цифровых технологий (интранета, экстранета и др.), применяемых организациями федеральных округов РФ, относительно показателей Москвы.

    Dubinina M.G.
    Spatio-temporal models of ICT diffusion
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1695-1712

    The article proposes a space-time approach to modeling the diffusion of information and communication technologies based on the Fisher –Kolmogorov– Petrovsky – Piskunov equation, in which the diffusion kinetics is described by the Bass model, which is widely used to model the diffusion of innovations in the market. For this equation, its equilibrium positions are studied, and based on the singular perturbation theory, was obtained an approximate solution in the form of a traveling wave, i. e. a solution that propagates at a constant speed while maintaining its shape in space. The wave speed shows how much the “spatial” characteristic, which determines the given level of technology dissemination, changes in a single time interval. This speed is significantly higher than the speed at which propagation occurs due to diffusion. By constructing such an autowave solution, it becomes possible to estimate the time required for the subject of research to achieve the current indicator of the leader.

    The obtained approximate solution was further applied to assess the factors affecting the rate of dissemination of information and communication technologies in the federal districts of the Russian Federation. Various socio-economic indicators were considered as “spatial” variables for the diffusion of mobile communications among the population. Growth poles in which innovation occurs are usually characterized by the highest values of “spatial” variables. For Russia, Moscow is such a growth pole; therefore, indicators of federal districts related to Moscow’s indicators were considered as factor indicators. The best approximation to the initial data was obtained for the ratio of the share of R&D costs in GRP to the indicator of Moscow, average for the period 2000–2009. It was found that for the Ural Federal District at the initial stage of the spread of mobile communications, the lag behind the capital was less than one year, for the Central Federal District, the Northwestern Federal District — 1.4 years, for the Volga Federal District, the Siberian Federal District, the Southern Federal District and the Far Eastern Federal District — less than two years, in the North Caucasian Federal District — a little more 2 years. In addition, estimates of the delay time for the spread of digital technologies (intranet, extranet, etc.) used by organizations of the federal districts of the Russian Federation from Moscow indicators were obtained.

  4. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

    Moiseev N.A., Nazarova D.I., Semina N.S., Maksimov D.A.
    Changepoint detection on financial data using deep learning approach
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575

    The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.

    To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.

    The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.

    As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.

  5. Гузев М.А., Никитина Е.Ю.
    Ранговый анализ уголовных кодексов Российской Федерации, Федеративной Республики Германия и Китайской Народной Республики
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 969-981

    При принятии решения в различных областях человеческой деятельности часто требуется создавать текстовые документы. Традиционно изучением текстов занимается лингвистика, которая в широком смысле может пониматься как часть семиотики — науки о знаках и знаковых системах, при этом семиотические объекты бывают разных типов. Для количественного исследования знаковых систем широко используется метод ранговых распределений. Ранговое распределение — упорядоченная в порядке убывания по частоте появления совокупность наименований элементов. Для частотно-ранговых распределений исследователи часто используют название рower-law distributions.

    В данной работе метод ранговых распределений применяется для анализа Уголовного кодекса различных стран. Общая идея подхода при решении этой задачи состоит в рассмотрении кодекса как текстового документа, в котором знаком является мера наказания за отдельные преступления. Документ представляется как список вхождений некоторого слова (знака), а также всех его производных (словоформ). Совокупность всех этих знаков образует словарь наказаний, для которого выполняется подсчет частоты встречаемости каждой меры наказания в тексте кодекса. Это позволяет преобразовать построенный словарь в частотный словарь наказаний, для дальнейшего исследования которого используются подход В. П. Маслова, предложенный им к анализу задач лингвистики. Этот подход состоит в введении понятия виртуальной частоты встречаемости преступления, которая является мерой оценки не только реального вреда для общества, но и последствий совершенного преступления в различных сферах жизни человека. На этом пути в работе предлагается параметризация рангового распределения для анализа словаря наказаний Особенной части Уголовного кодекса Российской Федерации, касающейся наказаний за экономические преступления. Рассмотрены различные редакции кодекса и показано, что построенная модель объективно отражает его изменения в лучшую сторону, вносимые законодателями с течением времени. Были исследованы тексты, включающие сходные по составу преступления, аналогичные российскому специальному разделу Особенной части, для Уголовных кодексов, действующих в Федеративной Республике Германия и Китайской Народной Республике. Полученные в статье ранговые распределения для соответствующих частотных словарей кодексов совпадают с полученным В. П. Масловым законом, существенно уточняющим закон Ципфа. Это позволяет сделать вывод как о хорошей организации текста, так и об адекватности выбранного наказания для преступлений.

    Guzev M.A., Nikitina E.Yu.
    Rank analysis of the criminal codes of the Russian Federation, the Federal Republic of Germany and the People’s Republic of China
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 969-981

    When making decisions in various fields of human activity, it is often required to create text documents. Traditionally, the study of texts is engaged in linguistics, which in a broad sense can be understood as a part of semiotics — the science of signs and sign systems, while semiotic objects are of different types. The method of rank distributions is widely used for the quantitative study of sign systems. Rank distribution is a set of item names sorted in descending order by frequency of occurrence. For frequency-rank distributions, researchers often use the term «power-law distributions».

    In this paper, the rank distribution method is used to analyze the Criminal Code of various countries. The general idea of the approach to solving this problem is to consider the code as a text document, in which the sign is the measure of punishment for certain crimes. The document is presented as a list of occurrences of a specific word (character) and its derivatives (word forms). The combination of all these signs characters forms a punishment dictionary, for which the occurrence frequency of each punishment in the code text is calculated. This allows us to transform the constructed dictionary into a frequency dictionary of punishments and conduct its further research using the V. P. Maslov approach, proposed to analyze the linguistics problems. This approach introduces the concept of the virtual frequency of crime occurrence, which is an assessment measure of the real harm to society and the consequences of the crime committed in various spheres of human life. On this path, the paper proposes a parametrization of the rank distribution to analyze the punishment dictionary of the Special Part of the Criminal Code of the Russian Federation concerning punishments for economic crimes. Various versions of the code are considered, and the constructed model was shown to reflect objectively undertaken over time by legislators its changes for the better. For the Criminal Codes in force in the Federal Republic of Germany and the People’s Republic of China, the texts including similar offenses and analogous to the Russian special section of the Special Part were studied. The rank distributions obtained in the article for the corresponding frequency dictionaries of codes coincide with those obtained by V. P. Maslov’s law, which essentially clarifies Zipf’s law. This allows us to conclude both the good text organization and the adequacy of the selected punishments for crimes.

  6. Казымов А.И., Котов В.М., Минеев М.А., Русакович Н.А., Яковлев А.В.
    Использование облачных технологий CERN для дальнейшего развития по TDAQ ATLAS и его применения при обработке данных ДЗЗ в приложениях космического мониторинга
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 683-689

    Облачные технологий CERN (проект CernVM) дают новые возможности разработчикам программного обеспечения. Участие группы TDAQ ATLAS ОИЯИ в разработке ПО распределенной системы сбора и обработке данных эксперимента ATLAS (CERN) связано с необходимостью работы в условиях динамично развивающейся системы и ее инфраструктуры. Использование облачных технологий, в частности виртуальных машин CernVM, предоставляет наиболее эффективные способы доступа как к собственно ПО TDAQ, так и к ПО, используемому в CERN: среда — Scientific Linux и software repository c CernVM-FS. Исследуется вопрос о возможности функционирования ПО промежуточного уровня (middleware) в среде CernVM. Использование CernVM будет проиллюстрировано на трех задачах: разработка пакетов Event Dump и Webemon, а также на адаптации системы автоматической проверки качества данных TDAQ ATLAS — Data Quality Monitoring Framework для задач оценки качества радиолокационных данных.

    Kazymov A.I., Kotov V.M., Mineev M.A., Russakovich N.A., Yakovlev A.V.
    Using CERN cloud technologies for the further ATLAS TDAQ software development and for its application for the remote sensing data processing in the space monitoring tasks
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 683-689

    The CERN cloud technologies (the CernVM project) give a new possibility for the software developers. The participation of the JINR ATLAS TDAQ working group in the software development for distributed data acquisition and processing system (TDAQ) of the ATLAS experiment (CERN) involves the work in the condition of the dynamically developing system and its infrastructure. The CERN cloud technologies, especially CernVM, provide the most effective access as to the TDAQ software as to the third-part software used in ATLAS. The access to the Scientific Linux environment is provided by CernVM virtual machines and the access software repository — by CernVM-FS. The problem of the functioning of the TDAQ middleware in the CernVM environment was studied in this work. The CernVM usage is illustrated on three examples: the development of the packages Event Dump and Webemon, and the adaptation of the data quality auto checking system of the ATLAS TDAQ (Data Quality Monitoring Framework) for the radar data assessment.

    Просмотров за год: 2.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.