Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
Ключевые слова: глубокое обучение, машинное обучение, ЭЭГ, сверточная нейронная сеть, классификация, кластеризация, прогнозирование взаимодействия препарата с мишенью.
Deep learning analysis of intracranial EEG for recognizing drug effects and mechanisms of action
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 755-772Predicting novel drug properties is fundamental to polypharmacology, repositioning, and the study of biologically active substances during the preclinical phase. The use of machine learning, including deep learning methods, for the identification of drug – target interactions has gained increasing popularity in recent years.
The objective of this study was to develop a method for recognizing psychotropic effects and drug mechanisms of action (drug – target interactions) based on an analysis of the bioelectrical activity of the brain using artificial intelligence technologies.
Intracranial electroencephalographic (EEG) signals from rats were recorded (4 channels at a sampling frequency of 500 Hz) after the administration of psychotropic drugs (gabapentin, diazepam, carbamazepine, pregabalin, eslicarbazepine, phenazepam, arecoline, pentylenetetrazole, picrotoxin, pilocarpine, chloral hydrate). The signals were divided into 2-second epochs, then converted into $2000\times 4$ images and input into an autoencoder. The output of the bottleneck layer was subjected to classification and clustering using t-SNE, and then the distances between resulting clusters were calculated. As an alternative, an approach based on feature extraction with dimensionality reduction using principal component analysis and kernel support vector machine (kSVM) classification was used. Models were validated using 5-fold cross-validation.
The classification accuracy obtained for 11 drugs during cross-validation was $0.580 \pm 0.021$, which is significantly higher than the accuracy of the random classifier $(0.091 \pm 0.045, p < 0.0001)$ and the kSVM $(0.441 \pm 0.035, p < 0.05)$. t-SNE maps were generated from the bottleneck parameters of intracranial EEG signals. The relative proximity of the signal clusters in the parametric space was assessed.
The present study introduces an original method for biopotential-mediated prediction of effects and mechanism of action (drug – target interaction). This method employs convolutional neural networks in conjunction with a modified selective parameter reduction algorithm. Post-treatment EEGs were compressed into a unified parameter space. Using a neural network classifier and clustering, we were able to recognize the patterns of neuronal response to the administration of various psychotropic drugs.
-
Generating database schema from requirement specification based on natural language processing and large language model
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1703-1713A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.
Ключевые слова: large language model, natural language processing entity-relationship diagrams, SQL.
Generating database schema from requirement specification based on natural language processing and large language model
Computer Research and Modeling, 2024, v. 16, no. 7, pp. 1703-1713A Large Language Model (LLM) is an advanced artificial intelligence algorithm that utilizes deep learning methodologies and extensive datasets to process, understand, and generate humanlike text. These models are capable of performing various tasks, such as summarization, content creation, translation, and predictive text generation, making them highly versatile in applications involving natural language understanding. Generative AI, often associated with LLMs, specifically focuses on creating new content, particularly text, by leveraging the capabilities of these models. Developers can harness LLMs to automate complex processes, such as extracting relevant information from system requirement documents and translating them into a structured database schema. This capability has the potential to streamline the database design phase, saving significant time and effort while ensuring that the resulting schema aligns closely with the given requirements. By integrating LLM technology with Natural Language Processing (NLP) techniques, the efficiency and accuracy of generating database schemas based on textual requirement specifications can be significantly enhanced. The proposed tool will utilize these capabilities to read system requirement specifications, which may be provided as text descriptions or as Entity-Relationship Diagrams (ERDs). It will then analyze the input and automatically generate a relational database schema in the form of SQL commands. This innovation eliminates much of the manual effort involved in database design, reduces human errors, and accelerates development timelines. The aim of this work is to provide a tool can be invaluable for software developers, database architects, and organizations aiming to optimize their workflow and align technical deliverables with business requirements seamlessly.
-
Сравнительный анализ статистических методов классификации научных публикаций в области медицины
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 921-933В работе проведено сравнение различных методов машинной классификации научных текстов по тематическим разделам на примере публикаций в профильных медицинских журналах, выпускаемых издательством Springer. Исследовался корпус текстов по пяти разделам: фармакология/токсикология, кардиология, иммунология, неврология и онкология. Рассматривались как методы поверхностной классификации, основанные на анализе аннотаций и ключевых слов, так и методы классификации на основе обработки собственно текстов. Были применены методы байесовской классификации, опорных векторов и эталонных буквосочетаний. Показано, что наилучшую точность имеет метод классификации на основе создания библиотеки эталонов буквенных триграмм, отвечающих текстам определенной тематики, а семантические методы уступают ему по точности. Выяснилось, что применительно к рассматриваемому корпусу текстов байесовский метод дает ошибку порядка 20 %, метод опорных векторов имеет ошибку порядка 10 %, а метод близости распределения текста к трехбуквенному эталону тематики дает ошибку порядка 5 %, что позволяет ранжировать эти методы для использования искусственного интеллекта в задачах классификации текстов по отраслевым специальностям. Существенно, что при анализе аннотаций метод опорных векторов дает такую же точность, что и при анализе полных текстов, что важно для сокращения числа операций для больших корпусов текстов.
Comparative analysis of statistical methods of scientific publications classification in medicine
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 921-933In this paper the various methods of machine classification of scientific texts by thematic sections on the example of publications in specialized medical journals published by Springer are compared. The corpus of texts was studied in five sections: pharmacology/toxicology, cardiology, immunology, neurology and oncology. We considered both classification methods based on the analysis of annotations and keywords, and classification methods based on the processing of actual texts. Methods of Bayesian classification, reference vectors, and reference letter combinations were applied. It is shown that the method of classification with the best accuracy is based on creating a library of standards of letter trigrams that correspond to texts of a certain subject. It is turned out that for this corpus the Bayesian method gives an error of about 20%, the support vector machine has error of order 10%, and the proximity of the distribution of three-letter text to the standard theme gives an error of about 5%, which allows to rank these methods to the use of artificial intelligence in the task of text classification by industry specialties. It is important that the support vector method provides the same accuracy when analyzing annotations as when analyzing full texts, which is important for reducing the number of operations for large text corpus.
-
Интерактивный инструментарий для распределенных телемедицинских систем
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 521-527Для жителей удалённых районов часто может составлять проблему прохождение квалифицированного медицинского обследования. Доступный медицинский персонал может отсутствовать или не обладать экспертными знаниями достаточного уровня. Помочь в такой ситуации могут телемедицинские технологии. С одной стороны, такие технологии позволяют врачам высокой квалификации оказывать удалённые консультации, повышая тем самым качество постановки диагноза и составления плана лечения. С другой стороны, средства автоматизированного анализа результатов проведённых исследований, анамнеза и информации об аналогичных случаях помогают облегчить выполнение рутинных действий и оказать медицинскому персоналу поддержу в принятии решений.
Создание телемедицинской системы для конкретной предметной области — это трудоёмкий процесс. Не достаточно подобать подходящих специалистов и заполнить базу знаний аналитического модуля. Необходимо также организовать всю инфраструктуру системы, удовлетворяя предъявляемые требования по надёжности, отказоустойчивости, защите персональных данных и так далее. Снизить трудоёмкость разработки телемедицинских комплексов может инструментарий, содержащий многократно используемые инфраструктурные элементы, общие для систем такого рода.
В данной работе описан интерактивный инструментарий для создания распределённых телемедицинских систем. Приводится список требований, предъявляемый к получаемым системам, и архитектурные решения, позволяющие удовлетворить эти требования. В качестве примера применения созданного инструментария описывается кардиологическая телемедицинская система.
Ключевые слова: интерактивный инструментарий, искусственный интеллект, распределённые телемедицинские системы, системы поддержки принятия решений, удалённые консультации.
An interactive tool for developing distributed telemedicine systems
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 521-527Просмотров за год: 3. Цитирований: 4 (РИНЦ).Getting a qualified medical examination can be difficult for people in remote areas because medical staff available can either be inaccessible or it might lack expert knowledge at proper level. Telemedicine technologies can help in such situations. On one hand, such technologies allow highly qualified doctors to consult remotely, thereby increasing the quality of diagnosis and plan treatment. On the other hand, computer-aided analysis of the research results, anamnesis and information on similar cases assist medical staff in their routine activities and decision-making.
Creating telemedicine system for a particular domain is a laborious process. It’s not sufficient to pick proper medical experts and to fill the knowledge base of the analytical module. It’s also necessary to organize the entire infrastructure of the system to meet the requirements in terms of reliability, fault tolerance, protection of personal data and so on. Tools with reusable infrastructure elements, which are common to such systems, are able to decrease the amount of work needed for the development of telemedicine systems.
An interactive tool for creating distributed telemedicine systems is described in the article. A list of requirements for the systems is presented; structural solutions for meeting the requirements are suggested. A composition of such elements applicable for distributed systems is described in the article. A cardiac telemedicine system is described as a foundation of the tool
-
Естественные модели параллельных вычислений
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.
Ключевые слова: естественные вычисления, эволюционные алгоритмы, искусственные биологические системы.
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Просмотров за год: 17. Цитирований: 2 (РИНЦ).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"





