Текущий выпуск Номер 6, 2025 Том 17

Все выпуски

Результаты поиска по 'Y-модель':
Найдено статей: 773
  1. Сааде М.Г.
    Моделирование влияния распространения эпидемии и карантина на экономику
    Компьютерные исследования и моделирование, 2025, т. 17, № 2, с. 339-363

    Эпидемии серьезно дестабилизируют экономику, снижая производительность, ослабляя потребительскую активность и перегружая общественные ресурсы, что часто приводит к экономическим кризисам. Пандемия COVID-19 продемонстрировала ключевую роль нематериальных мер, таких как карантин, в сдерживании распространения инфекционных заболеваний. Данное исследование изучает, как развитие эпидемии и введение карантинных мер влияют на экономическое благополучие населения. С помощью компартментальных моделей на основе обыкновенных дифференциальных уравнений (ОДУ) анализируется взаимосвязь между динамикой заболевания и экономическими последствиями, особенно фокусируясь на том, как различные строгости карантина воздействуют как на распространение болезни, так и на благосостояние населения. Результаты показывают, что эпидемии наносят значительный экономический ущерб, однако своевременные и строгие карантинные меры могут снизить нагрузку на систему здравоохранения, резко уменьшая пик заражений и замедляя развитие эпидемии. Тем не менее, стратегически продуманное ослабление карантина не менее важно для предотвращения повторных вспышек. Исследование выявляет ключевые эпидемиологические пороговые значения, такие как скорость передачи, уровень выздоровления и базовое репродуктивное число $(\mathfrak{R}_0)$, которые определяют эффективность карантина. Аналитически определяется оптимальная доля изолированных лиц, необходимая для минимизации общего числа заражений в условиях постоянного иммунитета. С экономической точки зрения, влияние карантина оценивается через динамику благосостояния населения: показано, что экономические последствия зависят от доли изолированных, но сохраняющих экономическую активность граждан. Чем выше эта доля, тем лучше сохраняется благосостояние даже при фиксированных эпидемиологических параметрах. Эти выводы предоставляют властям практические рекомендации для разработки сбалансированных карантинных стратегий, способных сдерживать распространение болезней и одновременно защищать экономическую стабильность в будущих кризисах.

  2. Оптимизация противоопухолевой радиотерапии является актуальной проблемой, поскольку примерно половина пациентов с диагнозом рак проходят радиотерапию во время лечения. Протонная терапия потенциально более эффективна, чем традиционная фотонная терапия из-за фундаментальных различий в физике распределения дозы, которые приводит к лучшему нацеливанию на опухоли и меньшему сопутствующему повреждению здоровых тканей. В настоящее время наблюдается растущий интерес к использованию нерадиоактивных радиосенсибилизирующих опухолеспецифических наночастиц, использование которых может повысить эффективность протонной терапии. Такие наночастицы представляют собой небольшие объемы сенсибилизатора, например, бора-10 или различных оксидов металлов, заключенных в полимерный слой, содержащий опухолеспецифические антитела, что позволяет осуществлять их направленную доставку к злокачественным клеткам. Кроме того, сочетание протонной терапии с антиангиогенной терапией, которая нормализует микрососудистую сеть, связанную с опухолью, может дать дальнейшее синергетическое увеличение общей эффективности лечения.

    Мы разработали пространственно распределенную математическую модель, имитирующую рост неинвазивной опухоли, проходящей лечение фракционированной протонной терапией с наносенсибилизаторами и антиангиогенной терапией. Результаты моделирования показывают, что наиболее эффективный способ комбинирования этих методов лечения должен существенно зависеть от скорости пролиферации опухолевых клеток и их собственной радиочувствительности. А именно, сочетание антиангиогенной терапии с протонной терапией, независимо от того, используются ли радиосенсибилизирующие наночастицы, должно повысить эффективность лечения быстрорастущих опухолей, а также радиорезистентных опухолей с умеренной скоростью роста. В этих случаях применение протонной терапии одновременно с антиангиогенными препаратами после первоначальной однократной инъекции наносенсибилизаторов является наиболее эффективным вариантом лечения среди проанализированных. Напротив, для медленнорастущих опухолей максимизация количества инъекций наносенсибилизаторов без антиангиогенной терапии оказывается более эффективным вариантом, причем повышение эффективности лечения растет с ростом радиочувствительности опухоли. Однако результаты также показывают, что общая эффективность протонной терапии, вероятно, должна увеличиться лишь умеренно при добавлении наносенсибилизаторов и антиангиогенных препаратов.

  3. Ревуцкая О.Л., Неверова Г.П., Фрисман Е.Я.
    Простейшая модель лимитированной популяции с половой структурой: результаты моделирования и апробация
    Компьютерные исследования и моделирование, 2025, т. 17, № 5, с. 941-961

    В данной работе предлагается и исследуется дискретная по времени математическая модель динамики численности популяции с сезонным характером размножения, позволяющая учесть влияние плотностно-зависимой регуляции и половой структуры на динамику численности животных. При построении модели предполагается, что рождаемость популяции зависит от численности самок. Регуляция роста численности осуществляется путем лимитирования выживаемости молоди, когда с увеличением численности популяции экспоненциально уменьшается выживаемость неполовозрелых особей. Проведено аналитическое и численное исследование предложенной модели. Показано, что когда в популяции выживает более половины самок и самцов, то популяция характеризуется устойчивой динамикой в большей части параметрического пространства при весьма высоком коэффициенте рождаемости. При этом колебания возникают, когда лимитирование выживаемости самок более выражено, чем лимитирование выживаемости самцов. Примечательно, что увеличение интенсивности лимитирования выживаемости самцов может стабилизировать динамику популяции, что особенно ярко проявляется при малой доле новорожденных самок. В результате исследования выявлено, что в зависимости от значений популяционных параметров модель может демонстрировать стабильную, периодическую и нерегулярную динамику. При этом возможно возникновение мультистабильности, когда вариация текущей численности в результате внешних факторов может привести к смене наблюдаемого режима динамики. С целью апробации предложенной структурированной модели предложен подход, позволяющий оценивать демографические параметры реальных популяций на основе их общей численности. Ключевая идея заключается в сведении дискретной во времени двухкомпонентной модели динамики численности лимитированной популяции с половой структурой к уравнению с запаздыванием, зависящему только от общей численности. В этом случае начальная половая структура определяется через общую численность популяции и зависит от демографических параметров популяции. Полученное одномерное уравнение применялось к описанию и оценке популяционных параметров, характеризующих половую структуру популяции конкретных видов, а именно охотничьих видов копытных Еврейской автономной области. Продемонстрировано, что уравнение с запаздыванием от общей численности довольно хорошо описывает реальную динамику копытных, улавливая тенденции изменения численности, и, как результат, вполне может применяться к описанию и анализу их динамики. Полученные в рамках работы точечные оценки располагаются в области биологически содержательных значений параметров и демонстрируют динамику численности популяций, подобную наблюдаемой в природе. Показано, что динамика численности популяций лося, косули и кабарги соответствует стабильному типу. Возникающие ежегодные колебания численности копытных в основном обусловлены влиянием внешних факторов и представляют собой отклонения от состояния равновесия. В целом полученные точечные оценки позволяют анализировать динамику структурированной популяции с сопутствующим краткосрочным прогнозом.

  4. Тикунова К.В., Голышев Г.Г., Соколовский С.Г., Рафаилов Э.У., Гольцов А.Н.
    Математическое моделирование действия лазерного излучения ближнего ИК-спектра на раковые клетки
    Компьютерные исследования и моделирование, 2025, т. 17, № 6, с. 1205-1218

    В последние десятилетия внедрение достижений биофотоники и квантовой электроники в медицинскую практику привело к развитию новых методов диагностики и терапии многих заболеваний. В области онкологии сегодня успешно применяется метод фотодинамической терапии (ФДТ) для лечения различных типов рака. Наряду с дальнейшим совершенствованием ФДТ в настоящее время ведутся исследования по разработке прямой лазерной терапии, при которой генерация молекул синглетного кислорода ($^{1}$О$_2^{}$) в раковых клетках происходит при действии лазерного излучения ближнего ИК-спектра (ЛИ БИК) с длиной волны $\lambda=1267$ нм без необходимости введения фотосенсибилизаторов в организм пациентов. С целью теоретического исследования прямого действия ЛИ БИК-спектра на раковые клетки и описания большого набора экспериментальных данных разработана математическая модель, включающая основные клеточные процессы, активируемые в раковых клетках при действии ЛИ и определяющие эффективность его цитотоксического действия на раковые клетки. В результате моделирования получена оценка скорости генерации $^{1}$О$_2^{}$ при ЛИ с $\lambda =1267$ нм и описана кинетика генерации вторичных молекул активных форм кислорода (АФК), деградация которых определяется действием учтенной в модели антиоксидантной системы защиты клетки. Показано, что при действии лазерного излучения индуцируются процессы перекисного окисления липидов, приводящие к повреждению клеточных мембран и гибели клеток путем ферроптоза. В результате моделирования установлено, что каскад свободнорадикальных и ферментативных реакций трансформации и накопления АФК приводит к пролонгированному ответу раковых клеток шейки матки на действие лазерного излучения с $\lambda=1267$ нм, в течение которого в раковых клетках развивается окислительный стресс, вызывающий их гибель в результате апоптоза и ферроптоза.

  5. Погребная А.Ф.
    Синтез АТФ F1-АТФазой в стохастической модели
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 217-223

    Данная работа является продолжением цикла работ [1-4], посвященных построению математической модели вращающегося молекулярного мотора F1-АТФазы. В данной работе в рамках представленной ранее модели рассматривается синтез АТФ при вращении ротора молекулярного мотора под действием внешней силы.

    Ключевые слова: АТФ, АТФаза, внешняя сила.
    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  6. Хораськина Ю.С., Комаров А.С., Безрукова М.Г., Жиянски М.К.
    Моделирование динамики кальция в органических горизонтах почвы
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 103-110

    В данной работе представлены результаты моделирования круговорота кальция в лесных экосистемах. Кальций является одним из основных элементов минерального питания растений, регулирующим разные метаболические процессы. Его недостаток вызывает нарушения роста тканей растений. Увеличение дефицита кальция в лесных экосистемах появляется вследствие усиления кислотной нагрузки или отчуждения биомассы при вырубках. Модель представляет собой описание круговорота на основе потока вещества между пулами, включая подробное описание почвенной части круговорота – трансформация и минерализация подстилки и др. Для калибровки модели использовались экспериментальные данные по еловым лесам Болгарии.

    Просмотров за год: 1.
  7. Федорова Е.А.
    Математическая модель оптимизации с учетом нескольких критериев качества
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 489-502

    Проведение эффективной региональной политики с целью стабилизации производства невозможно без анализа динамики протекающих экономических процессов. Данная статья посвящена разработке математической модели, отражающей взаимодействие нескольких экономических агентов с учетом их интересов. Разработка такой модели и ее исследование может рассматриваться в качестве важного шага в решении теоретических и практических проблем управления экономическим ростом.

    Просмотров за год: 7.
  8. Королев С.А., Майков Д.В.
    Идентификация математической модели и исследование различных режимов метаногенеза в мезофильной среде
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 131-141

    Предложена математическая модель процесса получения биогаза из отходов животноводства. Разработан алгоритм идентификации параметров модели. Проведена оценка точности идентификации модели. Приведены результаты моделирования для периодического и непрерывного режимов подачи субстрата. Найдена оптимальная скорость подачи субстрата для непрерывного режима.

    Просмотров за год: 10. Цитирований: 10 (РИНЦ).
  9. Коганов А.В., Кречет В.Г.
    Введение барионных струн в модель структуры спиральных галактик
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 597-612

    Предлагается новый альтернативный подход для объяснения плоского спектра скоростей орбитального движения звезд на периферии спиральных галактик и, в частности, значительного превышения значений скоростей, вычисленных по теореме о вириале. Концепция заключается в предположении о наличии у гравитационного поля центрального тела галактики цилиндрической, а не сферической симметрии. Эту конфигурацию поля можно объяснить наличием на оси галактики космической струны, длина которой перекрывает диаметр диска галактики. Эта модель будет подвергнута сравнению с более традиционной концепцией наличия у спиральной галактики шарового гало темной материи. Для этого подхода также будет предложена кинематическая модель и высказана гипотеза о природе темного вещества. Исследуются данные астрономических наблюдений о наличии космических струн в зонах, примыкающих к галактикам.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  10. Колегов К.С., Лобанов А.И.
    Сравнение квазистационарной и нестационарной математических моделей течений в испаряющейся капле
    Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 811-825

    Выведены основные уравнения нестационарной математической модели одномерных (осредненных по высоте капли) течений в высыхающей капле, покоящейся на твердом основании. В результате численных расчетов показано, что процессы в капле определяются законом испарения и значением капиллярного числа. При малых значениях капиллярного числа результаты, полученные с использованием нестационарной модели, мало отличаются от полученных при квазистационарном описании явления. При больших значениях капиллярного числа необходимо пользоваться полной формой записи уравнения.

    Просмотров за год: 4. Цитирований: 6 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.