Текущий выпуск Номер 5, 2025 Том 17

Все выпуски

Результаты поиска по 'ядро':
Найдено статей: 25
  1. Абшаев М.Т., Абшаев А.М., Аксёнов А.А., Фишер Ю.В., Щеляев А.Е.
    Результаты моделирования полевых экспериментов по созданию восходящих потоков для развития искусственных облаков и осадков
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 941-956

    Перспективным методом повышения количества осадков в засушливом климате является способ создания вертикальной высокотемпературной струи, насыщенной гигроскопическим аэрозолем. Такая установка позволяет создавать искусственные облака с возможностью образования осадков в безоблачной атмосфере, в отличие от традиционных способов искусственного увеличения осадков, в которых предусматривается повышение эффективности осадко-образования только в естественных облаках путем их засева ядрами кристаллизации и конденсации. Для увеличения мощности струи добавляются хлорид кальция, карбамид, пищевая соль в виде грубодисперсного аэрозоля, а также нанопорошок NaCl/TiO2, который способен конденсировать значительно больше водяного пара, чем перечисленные типы аэрозолей. Дисперсные включения в струе также являются центрами кристаллизации и конденсации в создаваемом облаке для повышения возможности осадкообразования. Для моделирования конвективных течений в атмосфере применяется математическая модель атмосферных течений большого масштаба FlowVision, решение уравнений движения, энергии и массопереноса проводится в относительных переменных. Рассматриваемая постановка задачи разделена на две части: модель начальной струи и постановка атмосферных течений большого масштаба FlowVision. Нижняя область, где происходит течение начальной высокоскоростной струи, моделируется в сжимаемой постановке с решением уравнения энергии относительно полной энтальпии. Данное разделение задачи на две отдельные подобласти необходимо, чтобы корректно провести численный расчет начальной турбулентной струи при высокой скорости (M > 0,3). Приводятся основные математические зависимости модели. С использованием представленной модели проведены численные эксперименты, для исходных данных взяты экспериментальные данные из натурных испытаний установки по созданию искусственных облаков, проведенные в Объединенных Арабских Эмиратах. Получено хорошее согласие с экспериментом: в 55% проведенных расчетов значение вертикальной скорости на высоте 400 м (более 2 м/с) и высота подъема струи (более 600 м) находятся в пределах погрешности 30% от экспериментальных характеристик, а в 30% расчетах — полностью согласуются с экспериментом. Результаты численного моделирования позволяют оценить возможность использования метода высокоскоростной струи для стимулирования искусственной конвекции и, в конечном итоге, для создания осадков. Расчеты проведены с использованием программного комплекса FlowVision на суперкомпьютере «Торнадо ЮУрГУ».

  2. Жабицкая Е.И., Жабицкий М.В., Земляная Е.В., Лукьянов К.В.
    Расчет параметров микроскопического оптического потенциала упругого рассеяния π-мезонов на ядрах с применением алгоритма асинхронной дифференциальной эволюции
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 585-595

    Новый асинхронный алгоритм дифференциальной эволюции использован для определения параметров микроскопического оптического потенциала упругого рассеяния пионов на ядрах 28Si, 58Ni и 208Pb при энергиях 130, 162 и 180 МэВ.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  3. Платонов Д.В., Минаков А.В., Дектерев А.А., Сентябов А.В.
    Численное моделирование пространственных течений с закруткой потока
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 635-648

    Данная работа посвящена исследованию закрученных течений. Течения с закруткой потока находят широкое применение в различных технологических процессах. Закрученные течения могут сопровождаться такими нестационарными эффектами, как прецессия вихревого ядра. В свою очередь крупномасштабные пульсации, вызванные прецессией вихря, могут привести к повреждению конструкций и снижению надежности оборудования. Таким образом, для инженерных расчетов требуются подходы, достаточно хорошо описывающие подобные течения. В данной работе представлена методика описания закрученных потоков апробированная в рамках программных комплексов Fluent и SigmaFlow. Проведено численное моделирование нескольких тестовых задач с закруткой потока. Полученные результаты сопоставлены между собой, а также с экспериментальными данными.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  4. Тишкин В.Ф., Трапезникова М.А., Чечина А.А., Чурбанова Н.Г.
    Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194

    Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.

  5. Никитюк А.С.
    Идентификация параметров вязкоупругих моделей клетки на основе силовых кривых и вейвлет-преобразования
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1653-1672

    Механические свойства клеток эукариот играют важную роль в условиях жизненного цикла и при развитии патологических процессов. В работе обсуждается проблема идентификации и верификации параметров вязкоупругих конститутивных моделей на основе данных силовой спектроскопии клеток эукариот. Предлагается использовать одномерное непрерывное вейвлет-преобразование для расчета ядра релаксации. Приводятся аналитические выкладки и результаты численных расчетов, позволяющие на основе экспериментально установленных силовых кривых и теоретических зависимостей «напряжение – деформация» с применением алгоритмов вейвлет-дифференцирования получать аналогичные друг другу функции релаксации. Анализируются тестовые примеры, демонстрирующие корректности программной реализации предложенных алгоритмов. Рассматриваются модели клетки, на примере которых демонстрируется применение предложенной процедуры идентификации и верификации их параметров. Среди них структурно-механическая модель с параллельно соединенными дробными элементами, которая является на данный момент наиболее адекватной с точки зрения соответствия данным атомно-силовой микроскопии широкого класса клеток, и новая статистико-термодинамическая модель, которая не уступает в описательных возможностях моделям с дробными производными, но имеет более ясный физический смысл. Для статистико-термодинамической модели подробно описывается процедура ее построения, которая в себя включает следующее: введение структурной переменной, параметра порядка, для описания ориентационных свойств цитоскелета клетки; постановку и решение статистической задачи для ансамбля актиновых филаментов представительного объема клетки относительно данной переменной; установление вида свободной энергии, зависящей от параметра порядка, температуры и внешней нагрузки. Также предложено в качестве модели представительного элемента клетки использовать ориентационно-вязкоупругое тело. Согласно теории линейной термодинамики получены эволюционные уравнения, описывающие механическое поведение представительного объема клетки, которые удовлетворяют основным термодинамическим законам. Также поставлена и решена задача оптимизации параметров статистико-термодинамической модели клетки, которая может сопоставляется как с экспериментальными данными, так и с результатами симуляций на основе других математических моделей. Определены вязкоупругие характеристики клеток на основе сопоставления с литературными данными.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.