Текущий выпуск Номер 2, 2025 Том 17

Все выпуски

Результаты поиска по 'эффект Олли':
Найдено статей: 5
  1. От редакции
    Компьютерные исследования и моделирование, 2025, т. 17, № 1, с. 5-7
  2. Башкирцева И.А.
    Анализ стохастических равновесий и индуцированных шумом переходов в нелинейных дискретных системах
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 559-571

    В работе рассматриваются дискретные динамические системы, находящиеся под действием случайных возмущений. Динамика отклонений стохастических решений от детерминированных равновесий исследуется с помощью систем первого приближения. Получены необходимые и достаточные условия, при которых уравнения для первых двух моментов этих отклонений имеют устойчивые стационарные решения. Стационарные вторые моменты используются для оценки разброса случайных состояний вокруг устойчивых равновесий нелинейных систем, а также для анализа индуцированных шумом переходов между бассейнами притяжения этих равновесий. Конструктивность предлагаемого подхода демонстрируется на примере анализа различных стохастических режимов для модели популяционной динамики Рикера с эффектом Олли.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  3. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  4. В статье рассматриваются модели «хищник – жертва» и проводится глобальный бифуркационный анализ системы Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа, которая моделирует динамику популяций хищников и их жертв в заданной экологической или биомедицинской системе. В данной системе используется наиболее распространенная математическая форма выражения эффекта (или закона) Олли через функцию роста жертвы. Закон Олли гласит, что существует вполне определенное соотношение между индивидуальной приспособленностью к условиям жизни и численностью либо плотностью индивидов данного вида, а именно: с увеличением численности популяции способность к выживанию и репродуктивная способность также увеличиваются. После алгебраических преобразований рациональную систему Лесли – Говера с аддитивным эффектом Олли и упрощенным функциональным откликом Холлинга III типа можно записать в виде квинтико-секстичной динамической системы, т.е. в виде системы с полиномами пятой и шестой степени. Используя информацию о ее особых точках и применяя наш бифуркационно-геометрический подход к качественному анализу, мы изучаем глобальные бифуркации предельных циклов квинтико-секстичной системы. Чтобы контролировать все бифуркации предельных циклов, особенно бифуркации кратных предельных циклов, необходимо знать свойства и комбинировать действия всех параметров, поворачивающих векторное поле системы. Это может быть сделано с помощью принципа окончания Уинтнера – Перко, согласно которому максимальное однопараметрическое семейство кратных предельных циклов заканчивается либо в особой точке, которая, как правило, имеет ту же кратность (цикличность), либо на сепаратрисном цикле, который также, как правило, имеет ту же кратность (цикличность). Этот принцип является следствием принципа естественного окончания, который был сформулирован для многомерных динамических систем Уинтнером, который изучал однопараметрические семейства периодических орбит ограниченной задачи трех тел и доказал, что в аналитическом случае любое однопараметрическое семейство периодических орбит может быть однозначно продолжено через любую бифуркацию, кроме бифуркации удвоения периода. Применяя планарный принцип Уинтнера – Перко, мы доказываем, что если цикличность фокуса в рассматриваемой системе равна трем, то система может иметь не более трех предельных циклов, окружающих одну особую точку.

  5. Епифанов А.В., Цибулин В.Г.
    О динамике косимметричных систем хищников и жертв
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813

    Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.

    Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.

    Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.

    Просмотров за год: 12. Цитирований: 3 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.