Все выпуски
- 2025 Том 17
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Эффективный ранг задачи оценивания элемента функционального пространства по измерению с ошибкой конечного числа ее линейных функционалов
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 189-202Решена задача восстановления элемента f бесконечномерного гильбертова пространства L2(X) по результатам измерений конечного набора его линейных функционалов, искаженным (случайной) погрешностью без априорных данных об f, получено семейство линейных подпространств максимальной размерности, проекции элемента f на которые допускают оценки с заданной точностью. Эффективный ранг ρ(δ) задачи оценивания определен как функция, равная максимальной размерности ортогональной составляющей Pf элемента f, которая может быть оценена с погрешностью, не превосходящей δ. Приведен пример восстановления спектра излучения по конечному набору экспериментальных данных.
-
Взаимосвязь и реализация квазиньютоновских и ньютоновских методов безусловной оптимизации
Компьютерные исследования и моделирование, 2016, т. 8, № 1, с. 55-78Просмотров за год: 7. Цитирований: 5 (РИНЦ).Рассмотрены ньютоновские и квазиньютоновские методы безусловной оптимизации, основанные на факторизации Холесского, с регулировкой шага и с конечно-разностной аппроксимацией первых и вторых производных. Для увеличения эффективности квазиньютоновских методов предложено модифицированное разложение Холесского квазиньютоновской матрицы, определяющее и решение проблемы масштабирования шагов при спуске, и аппроксимацию неквадратичными функциями, и интеграцию с методом доверительной окрестности. Предложен подход к увеличению эффективности ньютоновских методов с конечно-разностной аппроксимацией первых и вторых производных. Приведены результаты численного исследования эффективности алгоритмов.
-
Субградиентные методы для слабо выпуклых задач с острым минимумом в случае неточной информации о функции или субградиенте
Компьютерные исследования и моделирование, 2024, т. 16, № 7, с. 1765-1778Проблема разработки эффективных численных методов для невыпуклых (в том числе негладких) задач довольно актуальна в связи с широкой распространенностью таких задач в приложениях. Работа посвящена субградиентным методам для задач минимизации липшицевых $\mu$-слабо выпуклых функций, причем не обязательно гладких. Хорошо известно, что для пространств большой размерности субградиентные методы имеют невысокие скоростные гарантии даже на классе выпуклых функций. При этом, если выделить подкласс функций, удовлетворяющих условию острого минимума, а также использовать шаг Поляка, можно гарантировать линейную скорость сходимости субградиентного метода. Однако возможны ситуации, когда значения функции или субградиента численному методу доступны лишь с некоторой погрешностью. В таком случае оценка качества выдаваемого этим численным методом приближенного решения может зависеть от величины погрешности. В настоящей статье для субградиентного метода с шагом Поляка исследованы ситуации, когда на итерациях используется неточная информация о значении целевой функции или субградиента. Доказано, что при определенном выборе начальной точки субградиентный метод с аналогом шага Поляка сходится со скоростью геометрической прогрессии на классе $\mu$-слабо выпуклых функций с острым минимумом в случае аддитивной неточности в значениях субградиента. В случае когда как значение функции, так и значение ее субградиента в текущей точке известны с погрешностью, показана сходимость в некоторую окрестность множества точных решений и получены оценки качества выдаваемого решения субградиентным методом с соответствующим аналогом шага Поляка. Также в статье предложен субградиентный метод с клиппированным шагом и получена оценка качества выдаваемого им решения на классе $\mu$-слабо выпуклых функций с острым минимумом. Проведены численные эксперименты для задачи восстановления матрицы малого ранга. Они показали, что эффективность исследуемых алгоритмов может не зависеть от точности локализации начального приближения внутри требуемой области, а неточность в значениях функции и субградиента может влиять на количество итераций, необходимых для достижения приемлемого качества решения, но почти не влияет на само качество решения.
Ключевые слова: субградиентный метод, адаптивный метод, шаг Поляка, слабо выпуклые функции, острый минимум, неточный субградиент.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"